При постоянной мощности двс сила тяги

При постоянной мощности двс сила тяги. Насколько вы сильны? Определение и формула силы тяги

Сила тяги двигателя на ободе колеса иногда выражается в несколько другом виде.

Найти силу тяги двигателей, если их мощность равна 2000кВт и КПД двигателей 80 % (отв.

Итак, сила тяги двигателя ракеты пропорциональна массе топлива, сгорающего за единицу времени, и скорости его истечения; направлена она, как мы учли при выводе, противоположно скорости истечения газов.

Как изменяются ток и сила тяги двигателя при изменении скорости, если напряжение на его зажимах постоянно.

Как изменяются, ток, сила тяги двигателя и скорость движения при включении; ослабления поля.

Тяговые характеристики представляют собой зависимости силы тяги двигателя от скорости движения локомотива.

Во сколько раз нужно увеличить силу тяги двигателей самолета для увеличения скорости его движения в два раза, если сила сопротивления при движении в воздухе возрастает пропорционально квадрату скорости.

Горизонтальная составляющая этой силы уравновешивается силой тяги двигателя. Благодаря силам трения оба вихря должны были бы исчезнуть. Но на месте вихря, образовавшегося за крылом и унесенного воздушным потоком, возникает новый вихрь, вызывающий усиление циркуляции вокруг крыла.

Рассмотрим прямолинейное движение ракеты под действием силы тяги двигателей.

Формула N-Fv указывает на возможность преобразования силы тяги двигателя с помощью передаточных механизмов. Примером такого механизма, изменяющего силу тяги, является коробка скоростей автомобиля. Мощный современный быстроходный мотор создает на валу не слишком большие усилия, вращая вал с большой скоростью. Коробка скоростей уменьшает эти скорости и передает на колеса машины большие силы.

Динамометры общего назначения применяются для измерения силы тяги двигателей паровозов, тракторов, буксирных судов, самолетов, а также для определения растягивающих усилий, возникающих в конструкциях и отдельных узлах и деталях при приложении к ним внешних статических сил.

Если мотоциклист движется с постоянной скоростью, то сила тяги двигателя и сила трения, направленные по касательной к траектории, взаимно компенсируют друг друга. Сила тяжести приложена к центру масс, сила нормальной реакции и радиальная сила трения покоя fTp приложены к нижней точке каждого из колес и создают вращающий момент относительно воображаемой горизонтальной оси, проходящей через центр масс мотоциклиста. Ось эта вместе с центром масс движется относительно Земли по криволинейной траектории (окружности) и обладает нормальным ускорением.

Когда автомобиль движется с постоянной скоростью и, сила тяги двигателя становится равной силе трения. Вся работа силы тяги в это время расходуется против силы трения и зависит от скорости движения автомобиля. Действительно, при скорости v автомобиль проходит в единицу времени расстояние, численно равное этой скорости. Поэтому сила тяги двигателя F на этом пути за единицу времени совершает работу Fv. Если скорость v увеличить, то двигатель также должен увеличить ежесекундно совершаемую работу.

Следует различать понятия двигатель и силовая установка .

Двигателем принято называть устройство, участвующее в создании тяги (или мощности), необходимой для движения летательного аппарата. Двигатель является составной частью силовой установки, той ее частью, которая изготавливается и поставляется двигательным заводом.

Авиационной силовой установкой называют конструктивно объединенную совокупность двигателя с входным и выходным устройствами (с теми их элементами, которые изготавливаются на самолетостроительном заводе), встроенную в конструкцию планера (фюзеляжа или крыла) или скомпонованную в отдельных двигательных гондолах.

Силовая установка, помимо двигателя, входного и выходного устройств, включает в себя еще системы топливопитания, смазки, запуска и автоматического управления, обеспечивающие ее надежное функционирование, а также узлы крепления, необходимые для передачи усилий от двигателя к планеру. В теории авиадвигателей эти системы и узлы не рассматриваются.

2.2. Тяга реактивного двигателя

Под тягой двигателя Р понимают тягу без учета внешних сопротивлений входных и выходных устройств и других элементов силовой установки.

Тяга реактивного двигателя определяется по формуле:

Эта формула получила наименование формулы Стечкина .

Она была впервые получена Борисом Сергеевичем Стечкиным в его знаменитой работе «Теория воздушного реактивного двигателя», опубликованной в 1929 г. Она выведена в предположении, что двигатель расположен в мотогондоле, векторы скорости истечения и скорости полета параллельны оси двигателя, а внешнее обтекание двигателя является идеальным, т.е. происходит без трения, отрыва потока и без скачков уплотнения.

В формуле Стечкина в ряде случаев могут быть сделаны упрощения. Так, если пренебречь тем, что расходы воздуха на входе в двигатель
При постоянной мощности двс сила тягии газа на выходе из него
При постоянной мощности двс сила тягиотличаются, получим.

При постоянной мощности двс сила тягиотличается от
При постоянной мощности двс сила тягипо той причине, что в ГТД подводится топливо и могут быть отборы воздуха на нужды летательного аппарата.

При полном расширении газа в сопле до атмосферного давления (р с =р Н ) формула тяги приобретает еще более простой вид

При постоянной мощности двс сила тяги. (2.3)

2.3. Эффективная тяга силовой установки

Под эффективной тягой силовой установки Р эф понимают ту часть силы тяги двигателя, которая непосредственно используется для движения самолета, т.е. идет на совершение полезной работы по преодолению лобового сопротивления и инерции летательного аппарата. ВеличинаР эф равна тяге двигателяР за вычетом всех внешних сопротивлений, создаваемых самой силовой установкой.

По физическому смыслу Р эф является равнодействующей всех сил давления и трения, действующих на элементы проточной части со стороны газового потока, протекающего через силовую установку изнутри, и внешнего потока воздуха, обтекающего силовую установку снаружи. Задача определения эффективной тяги сводится к нахождению векторной суммы всех указанных сил. Эти силы принято разделять на внутренние (вн) и наружные (нар).

Внутренние силы представляют собой сумму сил давления и трения, действующих на рабочие поверхности силовой установки изнутри. Величина равнодействующей внутренних сил зависит от термодинамического совершенства рабочего процесса двигателя и практически не зависит от способа установки двигателя на летательном аппарате.

Наружные силы представляют собой совокупность сил давления и трения, действующих на силовую установку со стороны обтекающего ее внешнего потока. Эти силы существенно зависят от способа размещения силовой установки на летательном аппарате.

Рассмотрим наиболее простой с точки зрения учета условий внешнего обтекания случай — изолированная силовая установка в отдельной мотогондоле.

Наружная поверхность силовой установки здесь условно разделена на три части: лобовую часть вхМ , центральную часть М
При постоянной мощности двс сила тягии кормовую часть
При постоянной мощности двс сила тягиc .

При постоянной мощности двс сила тяги

Набегающий поток воздуха разделяется поверхностью тока Н–1–2–вх на внутренний, проходящий через двигатель, и внешний, обтекающий силовую установку снаружи. Сечения в невозмущенном потоке перед силовой установкой, на входе в воздухозаборник и на выходе из сопла двигателя обозначим Н–Н, вх–вх и с–с . Соответственно, площади нормальных сечений будут F Н , F вх и F с.

Главной причиной возникновения внешнего сопротивления силовой установки при сверхзвуковых скоростях полета является повышение давления на головном участке гондолы вх–М и наличие разрежения на ее кормовом участке
При постоянной мощности двс сила тяги–c . К этому прибавляется сопротивление от сил трения по всей поверхности гондолы от сечения вх–вх до сечения с–с .

Эффективная тяга силовой установки, согласно определению, равна

При постоянной мощности двс сила тяги, (2.4)

где R вн – равнодействующая сил давления и трения, действующих на внутренние поверхности силовой установки;

R нар – равнодействующая сил давления и трения, действующих на всю наружную поверхность гондолывхМ
При постоянной мощности двс сила тягиc .

Зная характер распределения давлений по наружной поверхности гондолы, величину силы R нар можно определить непосредственным интегрированием сил давления и трения по этой поверхности. Тогда

При постоянной мощности двс сила тяги, (2.5)

где При постоянной мощности двс сила тягииX тр  – равнодействующие сил давления и трения, приложенные к наружной поверхности гондолы;dF =dS cos – проекция элемента поверхности гондолы на плоскость, перпендикулярную направлению полета ( – угол между нормалью к элементу поверхности и этой плоскостью).

Величину R вн определим, пользуясь уравнением сохранения количества движения для некоторого контрольного объема, включающего все внутренние поверхности силовой установки. В качестве такого контрольного объема выберем объем внутренней струи, заключенный между сечениямиНН исс .

При постоянной мощности двс сила тяги, (2.6)

где p Н F Н иp с F с – силы давления, приложенные к торцевым поверхностям выделенного участка струи;При постоянной мощности двс сила тяги– равнодействующая сил давления, приложенных к боковой поверхности струи токаН–1–2–вх ;R вн – равнодействующая сил давления и трения, действующих на внутренние поверхности силовой установки (равная по модулю силе
При постоянной мощности двс сила тяги, действующей со стороны СУ на выделенный контрольный объем газа).

При постоянной мощности двс сила тяги. (2.7)

Подставляя выражения R нар из (2.6) иR вн из (2.8) в уравнение (2.5), получим

Для перехода от абсолютных давлений к избыточным воспользуемся следующим очевидным тождеством:

При постоянной мощности двс сила тяги.

Оно позволяет выражение (2.9) привести к виду

Эта формула является общим выражением эффективной тяги для силовой установки рассмотренной схемы. При этом необходимо иметь в виду, что тяга реактивного двигателя является векторной величиной. Если формулу (2.9) представить в векторной форме, то вектор тяги необязательно будет направлен вдоль оси двигателя, как было принято при выводе, а может отклоняться от нее, например, при полетах со значительными углами атаки или при повороте сопла.

В том случае, если тело при перемещении имеет ускорение, то на него кроме всех прочих обязательно действует некоторая сила, которая является силой тяги в рассматриваемый момент времени. В действительности, если тело движется прямолинейно и с постоянной скоростью, то сила тяги также действует, так как тело должно преодолевать силы сопротивления. Обычно силу тяги находят, рассматривая силы, действующие на тело, находя равнодействующую и применяя второй закон Ньютона. Жестко определенной формулы для силы тяги не существует.

Не следует считать, что сила тяги, например, транспортного средства действует со стороны двигателя, так как внутренние силы не могут менять скорость системы как единого целого, что входило бы в противоречие с законом сохранения импульса. Однако следует отметить, что для получения у силы трения покоя необходимого направления, мотор вращает колеса, колеса «цепляются за дорогу» и порождается сила тяги. Теоретически было бы возможно не использовать понятие «сила тяги», а говорить о силе трения покоя или силе реакции воздуха. Но удобнее внешние силы, которые действуют на транспорт делить на две части, при этом одни силы называть силами тяги , а другие — силами сопротивления . Это делается для того, чтобы уравнения движения не потеряли свой универсальный вид и полезная механическая мощность (P) имела простое выражение:

Определение и формула силы тяги

Исходя из формулы (1) силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

Для автомобиля, поднимающегося в горку, которая имеет уклон , масса автомобиля m сила тяги (F T) войдет в уравнение:

где a – ускорение, с которым движется автомобиль.

Единицы измерения силы тяги

Основной единицей измерения силы в системе СИ является: =Н

Примеры решения задач

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения, которая равна =0,1 от силы тяжести. Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

При постоянной мощности двс сила тяги

В качестве основы для решения задачи используем второй закон Ньютона:

Спроектируем уравнение (1.1) на оси X и Y:

По условию задачи:

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

Переведем массу в систему СИ m=1т=10 3 кг, проведем вычисления:

Ответ. F T =2,98 кН

Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m. Коэффициент трения тела о доску равен . К доске приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент времени доска начнет выскальзывать из-под тела?

Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.

Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:

  • силы трения (покоя, качения, скольжения),
  • сопротивления воздуха (газа),
  • сопротивления воды и др.

Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона , который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.

Надо сказать, что этот закон справедлив лишь в так называемых инерциальных системах отсчёта. В неинерциальных системах отсчёта этот закон не действует и нужно использовать второй закон Ньютона. В таких системах отсчёта тело тоже будет двигаться по инерции, но оно будет двигаться с ускорением, стремясь сохранять своё движение, т.е. на него также не будут действовать никакие внешние силы, кроме силы инерции, стремящейся двигать тело в том направлении, в каком оно двигалось до воздействия. Тут мы приходим к рассмотрению второго закона Ньютона , который также справедлив в инерциальных системах отсчёта, т. е. в таких системах отсчёта, в которых тело движется с постоянной скоростью либо находится в покое.

Этот закон утверждает, что для того, чтобы вывести тело из состояния покоя или равномерного движения, к нему необходимо приложить силу, равную F=m a, где m — это масса тела, a — ускорение, сообщаемое телу. Зная эти законы, можно рассчитать силу тяги (двигателя автомобиля, ракетного двигателя или, например, лошади, тянущей нагруженную повозку).

Примеры из жизни

Насколько вы сильны?

Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m g = 0. Тогда из этого равенства следует, что N = m g.

Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.

Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax N, где fmax – максимальный коэффициент трения покоя.

Если в эту формулу подставить выражение для N , то мы получим Fтр.max = fmax m g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax m g = fск m g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 30 кг 9,81 м/с² = 206,01 Н (Ньютона).

Насколько силён ваш автомобиль?

Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.

Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f m g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).

Но что делать, если масса автомобиля m, коэффициент трения качения f и время разгона t неизвестны? Тогда можно поступить по-другому. Двигатель вашего автомобиля при разгоне совершил работу A = Fтяги s. Поскольку формула расстояния имеет вид s = v t, то выражение для работы будет таким: A = Fтяги v t. Разделив обе части этого равенства на t, получим A/t = Fтяги v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги v. Отсюда уже получим искомую формулу: Fтяги =N/v.

Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н

2,94 кН (килоньютона).

Около 3 килоньютонов . Много это или мало? Допустим, вы жмёте 100 килограммовую штангу. Чтобы её поднять, вам нужно преодолеть её вес, равный P = m g = 100 кг 9,81 м/с² = 981 Н (ньютон)

0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).

При постоянной мощности двс сила тяги

Таким образом, зная школьный курс физики , мы можем с лёгкостью вычислить силу тяги:

  • человека,
  • лошади,
  • паровоза,
  • автомобиля,
  • космической ракеты и всех прочих видов техники.

В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.

Не получили ответ на свой вопрос? Предложите авторам тему.

Рассмотрим вопрос о том, каким требованиям должны удовлетворять двигатели, приводящие в движение различные механизмы.

Предположим, что двигатель должен обеспечить движение автомобиля массой со скоростью Со стороны дороги на автомобиль действуют известные силы трения Сопротивление воздуха учитывать не будем.

Прежде всего двигателю необходимо разогнать автомобиль. Для этого он должен в момент начала движения развить силу тяги, намного превосходящую силу трения и достаточную для сообщения автомобилю необходимых ускорений. Чтобы разгон не занимал большого времени, эти ускорения должны быть большими. Таким образом, первое требование к двигателю — способность развивать большие силы тяги в начале движения.

Когда автомобиль движется с постоянной скоростью сила тяги двигателя становится равной силе трения. Вся работа силы тяги в это время расходуется против силы трения и зависит от скорости движения автомобиля. Действительно, при скорости автомобиль проходит в единицу времени расстояние, численно равное этой скорости. Поэтому сила тяги двигателя на этом пути за единицу времени совершает работу Если скорость о увеличить, то двигатель также должен увеличить ежесекундно совершаемую работу. Если он не сможет этого сделать, то достичь увеличения скорости не удастся Поэтому второе важное требование к двигателю — способность совершать достаточно большую работу за единицу времени.

Работа, которую двигатель может совершить за единицу времени, называется мощностью двигателя.

Если за какое-то время двигатель совершает работу то его мощность по определению будет равна

Мощность — одна из основных характеристик двигателя. Она определяет возможность применения двигателя для тех или иных целей.

Преобразуем формулу мощности так, чтобы в нее вошла сила тяги которую может развить двигатель. По определению работа где расстояние, на котором действовала сила Подставляя это значение в формулу для получим:

Но в нашем случае где модуль вектора скорости движения автомобиля. Вводя это выражение в формулу для окончательно получим

Мощность двигателя равна развиваемой им силе, умноженной на скорость перемещения точки приложения этой силы.

Из найденной формулы вытекает ряд важных для инженерного дела следствий:

1. Для получения большой мощности можно пойти двумя путями: или увеличивать силу тяги, развиваемую двигателем, или увеличивать его быстроходность. Первый путь связан с увеличением силовых нагрузок на все движущиеся части двигателя. Например, в автомобильном моторе такое увеличение мощности будет связано с увеличением сил давления на поршни, шатуны, коленчатый вал и т. д. Но все материалы обладают ограниченной прочностью. Поэтому, для того чтобы детали смогли выдерживать действие таких больших сил, нужно увеличивать размеры деталей, делать их более массивными. Все мощные тихоходные машины оказываются необычайно громоздкими.

Второй путь позволяет получить такие же большие мощности при малых силовых нагрузках на детали двигателя и при значительно меньших его размерах. Поэтому инженеры, создавая современные двигатели, стремятся сделать их возможно более быстроходными.

2. Формула указывает на возможность преобразования силы тяги двигателя с помощью передаточных механизмов. Примером такого механизма, изменяющего силу тяги, является коробка скоростей автомобиля. Мощный современный быстроходный мотор создает на валу не слишком большие усилия, вращая вал с большой скоростью. Коробка скоростей уменьшает эти скорости и передает на колеса машины большие силы. Таким образом, коробка скоростей

является механизмом, который, не изменяя величину мощности двигателя, передает ее на рабочие органы машины и одновременно преобразует силу тяги нужным образом.

3. Все двигатели (за исключением реактивных) рассчитываются на вполне определенную и постоянную мощность Но если мощность постоянна, то из формулы следует, что при увеличении скорости должно происходить изменение силы тяги, развиваемой двигателем. При сила тяги должна непрерывно убывать с ростом скорости. При каких-то значениях скоростей сила тяги двигателя будет равной силе трения.

Этим условием определяются максимальные скорости, которых можно достичь с данным двигателем. Например, известно, что наибольшая мощность, которую может развить двигатель автомобиля, равна Силы трения всех видов, действующие на автомобиль, известны и равны Какую максимальную скорость можно развить на таком автомобиле? Максимальная скорость определится из равенства силы тяги двигателя силе трения

Какую среднюю мощность и силу тяги должен развивать электровоз, чтобы состав массой

Условие задачи:

Какую среднюю мощность и силу тяги должен развивать электровоз, чтобы состав массой 1000 т через 2 мин после начала равноускоренного движения по горизонтальному пути приобрел скорость 72 км/ч? Коэффициент силы сопротивления движению 0,005.

Задача №2.7.26 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Схема к решению задачи

Начнем с определения величины силы тяги. Для этого запишем второй закон Ньютона в проекции на горизонтальную ось (x):

Силу сопротивления движению (F_<сопр>) найдем по следующей формуле ((N=mg) из первого закона Ньютона в проекции на вертикальную ось (y)):

Так как движение равноускоренное без начальной скорости, и за время (t) скорость состава с электровозом станет равной (upsilon), то легко найти ускорение:

Окончательная формула для расчета силы тяги такая:

Средняя мощность равна отношению совершенной работы ко времени (за которое эта работа совершилась):

Так как вектор силы тяги (overrightarrow F) сонаправлен с вектором перемещения (overrightarrow S), т.е. угол (alpha) между ними равен (0^circ) и (cos alpha = 1), то работу силы тяги можно определить по такой формуле:

Путь при равноускоренном движении найдем по формуле:

Ранее было отмечено, что (upsilon = at), поэтому:

В итоге среднюю мощность найдем по такой формуле:

Переведем массу состава, время движения и скорость в систему СИ, а потом уже произведем вычисления.

[2;мин = 2 cdot 60;с = 120;с]

[F = <10^6>left( ><<120>> + 0,005 cdot 10> right) = 216666,7;Н approx 217;кН]

[> = <10^6>left( ><<120>> + 0,005 cdot 10> right) cdot frac<<20>> <2>= 2166666,7;Вт approx 2,17;МВт]

Ответ: 217 кН; 2,17 МВт.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Источник http://avtoprin.ru/ctp/pri-postoyannoi-moshchnosti-dvs-sila-tyagi-naskolko-vy-silny-opredelenie-i/
Источник http://easyfizika.ru/zadachi/dinamika/kakuyu-srednyuyu-moshhnost-i-silu-tyagi-dolzhen-razvivat-elektrovoz-chtoby-sostav-massoj/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: