Самодельный блок управления для дизельного двигателя / Хабр

Самодельный блок управления для дизельного двигателя

Автомобили уже давно обросли всякой электроникой, так обросли, что просто жуть: в дверях контроллер, в фарах контроллер, в тормозах контроллер, ну и в двигателе, как без него. Обычно, когда речь заходит о блоке управления двигателем (ECU) представляется бензиновый мотор, обвешанный датчиками, исполнительными элементами и жгутами проводов. Блок управления чутко считывает параметры датчиков, корректирует смесь и начало искрообразования. Сложно! Но энтузиасты создают свои блоки управления, пишут альтернативные прошивки чтобы выжать лишнюю «пони», обойти какую-то неисправность или просто для повышения навыков. Причем, как правило, на такой шаг авторов толкают обстоятельства, к примеру недовольство контактной системой зажигания у бензиновых моторов, легкий некомплект электрики и так далее.

Именно о таких обстоятельствах и о дизельном двигателе и пойдет речь.

Итак, постановка задачи:

Дано:

  • Дизельный двигатель с механическим насосом DW8, производства концерна PSA, 2000 г.в. Насос издох от времени.
  • Новый топливный насос, приобретенный по случаю, с электронным управлением опережения впрыска от модификации мотора DW8B (Те самые обстоятельства).
  • Полное отсутствие проводки под электронное управление, самого блока управления.
  • Желание разобраться с нехитрой электроникой насоса, поднять навык, поглубже изучить работу таких насосов.

Требуется: исправный двигатель после «сращения».

Немного теории

Раньше, когда дизельные двигатели были большие, они управлялись рядными насосами высокого давления. Всё очень просто — на каждый цилиндр плунжер, который давит топливо через форсунку. На плунжер давит кулачковый вал, который имеет изменяемую высоту подъема кулачков, так получается управление двигателем.

Потом стали делать насосы посложнее, распределенного типа. Плунжеров там один-два, топливо под давлением уже распределяется по цилиндрам специальным механизмом. Управление посложнее, но всё же механическое — рычаг газа и всё.

Полностью электронные системы впрыска сменили механические — каждая форсунка открывается по команде с блока управления, точно дозируя топливо и обеспечивая ну самый экологичный и экономичный режим работы двигателя.

Мой насос застрял где-то между механическим распределительным и электронным. По сути — распределительный насос роторного типа (производитель Lucas-Delphi), с одним единственным исполнительным элементом: клапаном опережения впрыска.
Когда я только приобретал насос, я не придал значения странному соленоиду в боку насоса, и решил «станет».

Что за опережение впрыска? Как выяснилось позже, необычайно важный параметр в работе двигателя. От него зависит и приемистость, и максимальные обороты, и расход двигателя. Аналог на бензиновых моторах — УОЗ (угол опережения зажигания).

Суть этого самого угла опережения впрыска проста: чтобы сгореть топливу в цилиндре требуется время. Чем выше обороты двигателя, тем меньше времени есть у топлива, и поэтому его надо впрыснуть в цилиндр пораньше, чтобы после прохождения поршня через ВМТ топливо уже горело и отдавало энергию маховику. На низких оборотах наоборот, впрыскивать топливо надо сразу у ВМТ, чтобы оно начало гореть не заранее, и не создавало нагрузку на идущий вверх поршень. На холодном двигателе впуск надо делать раньше, на горячем — позже. Под нагрузкой — раньше (топлива больше), без — позже. Вот такая вот наука в одном параметре.

Беглое гугление показало довольно скудный объем информации по вариантам регулирования — очевидно это удел разработчиков топливной аппаратуры, даже ремонтники не оперируют какой-то теорией. Особенно печально с абсолютными значениями углов — для разных двигателей значения немного разные, и всё покрыто мраком тайны.

Понимание начало строиться с этой диаграммы:

Ну, за исключением отсутствия абсолютных значений, ничего сложного.

Вместе с теоретическими изысканиями стоило посмотреть и механический аналог всей этой системы — благо он есть в старом насосе. Механизм опережения впрыска там выполнен очень просто, даже изящно. Поршень, толкаемый давлением топлива в корпусе насоса подперт пружиной и связан с исполнительным механизмом — кольцом опережения. При возрастании оборотов давление на поршень растет и он сдвигает впрыск в раннюю сторону. При возрастании нагрузки происходит абсолютно то же. Кроме того, жесткость пружины изменяется при нажатии на педаль газа — чем больше нажата педаль, тем слабее пружина, и тем больше угол. Осталось теперь только реализовать всё то же в виде электроники, а значит пришло время оценить, что доступно из датчиков и исполнительных механизмов.

Проще всего с последними. Их ровно одна штука, клапан опережения впрыска, два провода. Представляет из себя соленоид, который отпирает топливную магистраль, тем самым понижая давление на кольцо опережения в насосе. Полностью открытый клапан соответствует минимальному опережению, закрытый — максимальному. Регулирование производится при помощи ШИМ на частоте около 50Гц. Степень регулировки высока, этим клапаном можно вытянуть целый зуб на ремне ГРМ, диапазон около 25-30 градусов. Это из плюсов. Из минусов — одному углу соответствуют разные значения заполнения управляющего сигнала в зависимости от температуры топлива. Это автоматически исключает открытую систему регулирования, и значит, пора посмотреть на датчики.

Итак, главный параметр, который контролируется системой — текущий угол опережения зажигания. Угол подразумевает значение в градусах между чем-то и чем-то. У дизельного двигателя это два датчика: датчик положения коленчатого вала и датчик подъема иглы в форсунке первого цилиндра.

Датчики в моем двигателе выполнены индуктивными. Вот картинка, которая примерно соответствует датчику положения коленвала:

Обмотка датчика подмагничивается постоянным магнитом, либо постоянным током через катушку. Изменение расстояния от датчика до магнитомягкого препятствия вызывает изменение тока через катушку, и может быть зарегистрировано как импульс напряжения на выходе датчика. Замечательно, что таким образом можно зафиксировать как приближение метки (положительный импульс) так и отдаление (отрицательный).

Однако, на дизельных автомобилях, датчик этот выполнен немного иначе — на картинке датчик взаимодействует с зубцами на маховике, в моем случае на маховике есть два углубления напротив датчика по диаметру. Они дают два импульса на оборот маховика, что означает 4 импульса на один оборот вала топливного насоса. Эту нехитрую мудрость я познал, получив сигнал, в 4 раза превышающий по частоте расчетный. В этом подходе есть плюс: так как импульса 4, можно снимать сигнал с любой форсунки.

Датчик подъема иглы выполнен так же, но в корпусе форсунки. Топливо, под давлением подрывает иглу распылителя, одновременно наводя в катушке форсунки слабый импульс.

Итак, для минимальной работоспособности системы необходимо два датчика. В моем атомобиле был (к счастью) один — датчик положения коленвала. Форсунку с датчиком пришлось приобрести отдельно, благо, на разборке стоит она совсем ничего.

Теперь сигналы надо обработать и ввести в контроллер, очередная трудность. Трудность потому, что готовой схемотехники входных цепей что-то в интернете не видать. В угаре конструирования был собран на коленке простейший формирователь сигнала: дифференциальный усилитель на LM358 и триггер Шмидта. Коэффициент усиления был выбран наобум, и равнялся примерно 50. Какова же была радость, когда с обоих датчиков я получил вполне нормальный сигнал!

Самое время было оценить реальные параметры двигателя. Так же на коленке была собран простейший измеритель угла между двух сигналов с приемлемой точностью в 1 градус. Конструкция — микроконтроллер ATMEGA8A и семисегментный индикатор для наглядности.

Данные получились немного странными. Итак, максимальное опережение согласно моему прибору — 25 градусов, минимальное, при котором двигатель не глохнет — 8. Это не вязалось с графиком из начала статьи, где фигурируют отрицательные величины угла опережения. Пришлось сделать стробоскоп, чтобы проверить, а не брешет ли кто. Выяснилось что не брешет, просто метки на маховике сдвинуты относительно ВМТ примерно на 10 градусов.
Ох, что-то многовато «примерно» для регулировки одного параметра. Сначала график зависимости в попугаях, а потом неизвестная константа. На помощь пришла настройка двигателя «на слух», «на запах» и по реакции на педаль. Радости добавило то, что бывалые дизелисты на форумах дают прямо противоположные советы по настройке. У многих звон поршней и громкая работа двигателя — это запаздывание впрыска, а на деле как раз наоборот. Безумная, дизельная тяга «на низах» — следствие чрезмерного опережения впрыска, на деле — наоборот. Из собственного опыта были вынесены такие умозаключения:

На низких оборотах угол должен быть минимальным, границу можно обнаружить при запуске полностью холодного двигателя. Если глохнет после отключения свечей накала — слишком поздний угол, увеличиваем опережение. В моих попугаях это 8-9 градусов. При такой установке двигатель не глохнет при резком отпускании педали сцепления, тянет на холостых даже на 4-й передаче, ну в общем красота. Такой статический угол не подходит для комфортной работы по одной причине — двигатель невозможно раскрутить выше 1500 оборотов, и при этом он жутчайше греется, выкидывая солярку в выхлопную трубу.

Верхняя граница также обнаружилась экспериментально, угол около 25 градусов позволяет двигателю на высоких оборотах не просто крутиться, а еще и ускорять машину. При этом отсутствует характерный цокот поршней, запах выхлопа имеет здоровый, слегка «камазовый» запах, никакой кислятины и чёрного дыма. Это косвенно означает, что солярка сгорела полностью, при этом не при слишком высоких температурах.

Пришло время собрать всё это воедино, красиво оформить и откатать блок управления. Однако, радость была кратковременной. Сначала я выяснил, что простейший формирователь сигнала с форсунки очень сильно сбоит и даёт пачку импульсов вместо одного при повышении оборотов до 1800-2000 об/мин, совершенно не помогли в борьбе с этим ни защитные диоды, ни экранировка кабелей, ни игра с коэффициентом усиления, ни сборка типовой схемы формирователя из бензинового ECU. Поиск решения данной проблемы периодически всплывает на просторах рунета. Там же и был подсказан правильный ход мыслей — воспользоваться специализированной микросхемой.

Зовется она MAX9926, это целая линейка специализированных ИС для датчиков положения коленвала, датчиков ABS и прочих индуктивных. По отзывам — ну просто панацея, вытягивает полезный сигнал с уровня шумов и при наличии помех. Однако, ни найти её по месту жительства (даже не слышали), ни заказать из Китая (дорого и только крупные партии) я её не смог. Но есть ведь даташит с внутренней структурой, чего бы не повторить?

В результате родилась вот такая схема:

Небольшие пояснения

На микросхеме U5 собран дифференциальный усилитель с умеренным усилением. Никаких особенностей тут нет, разве что однополярное питание без резисторов сдвига, они не нужны для данного ОУ.

Интересная часть собрана на компараторе U6. По сути, это базовый компаратор-одновибратор с защелкой. Гистерезис вводится резистором R24, а резистор R23 и диод D10 задерживают задний фронт сигнала примерно на 5мс, что позволяет игнорировать все сигналы с частотой повторения выше 200 гц.

Опорный вход компаратора висит под изменяемым потенциалом, благодаря диоду D11 и резисторам R26, R27. Чем выше уровень сигнала на входе компаратора, тем выше порог его срабатывания. Это решает проблему разного уровня полезного сигнала в зависимости от частоты вращения двигателя.

Это заработало! Теперь без помех принимается сигнал и от форсунки, и от датчика коленвала. Самое время регулировать опережение впрыска. Очевидно, что для регулирования просто таки напрашивается ПИД-регулятор. Сложность, как всегда, в его настройке.

Какие-то численные методы для вычисления ПИД-коэффициентов разбиваются о полное отсутствие любых данных по реакции насоса на управление. Значит надо подбирать. Начинают все с пропорционального коэффициента, попробовав значение 1 я уже увидел работу регулятора. Время реакции такого регулятора удручает, заданный угол устанавливается примерно за 3-4 секунды и имеет склонность к колебаниям. Всё бы ничего, но в данном применении можно допустить ошибку регулирования в сторону опережения, но нельзя ни градуса в сторону запаздывания. Особенно болезненно запаздывание угла сказывается на высоких оборотах, машина вроде только ехала 100 км/ч, а вот уже тормозит двигателем как тормозами. Тогда я ввёл прямой пропорциональный коэффициент и обратный, в 4 раза больший. При уходе угла в запаздывание контроллер быстро возвращает его в безопасные величины.
П- и И- коэффициенты подбирались «на глазок» по критерию отсутствия автоколебаний.

Закон изменения угла опережения от оборотов пока забит не в таблицу, а подчиняется линейному закону, без каких-то изысков. Для проверки сойдет, а там можно и заморочиться.

Датчик педали газа в насосе выполнен в виде переменного резистора на оси рычага насоса, ползунок резистора подключен к АЦП микроконтроллера. Нажатие педали «в пол» изменяет заданный угол на 2 градуса. По ощущениям — самое то, приемистость и набор оборотов двигателем хорошие.

О железе

Так так процессы в данном регуляторе текут медленно, то и особого быстродействия не требуется. С задачей справился AVR-микроконтроллер MEGA8A на частоте всего 1МГц. Он комфортно успевает считать ПИД, обрабатывать прерывания по датчикам, отображать текущий угол на семисегментном индикаторе и выводить отладочную информацию в последовательный порт.

Устройство, сначала собранное на чем попало и висевшее на проводах у мотора, перекочевало в культурный корпус блока управления тахометром, который так кстати освободился. Освободился не просто так, а вместе с герметичным 15-и контактным разъемом, куда и была подведена «коса» мотора, а штатный тахометр теперь получает сигнал с нового формирователя.

В общем, можно и нужно подводить итоги.

Разработка определенно удалась. Пару сотен километров на новом насосе не показали разницы в поведении по сравнению со старым, механическим. Расход топлива даже немного упал, и составил приятные 7.5л на сотню в городском цикле.

Навыков было получено бессчетное множество, как по теории топливной аппаратуры, так и по программированию микроконтроллеров.

Планы на будущее

Несмотря на закон жизни «лучшее враг хорошего», блоку управления светят доработки. Во-первых, в алгоритме никак не учитываются несколько параметров, а именно: температура двигателя и количество впрыскиваемого топлива. С первым параметром всё понятно, лишь стоит подключить штатный датчик температуры ОЖ, то со вторым придется сильно менять схему контроллера. Дело в том, что нагрузку на двигатель можно отловить, анализируя отрицательный выброс на сигнале с форсунки. Он соответствует запиранию форсунки, а значит посчитав длину открытого состояния форсунки можно прикинуть как расход топлива, так и нагрузку. Только для этого текущего микроконтроллера уже мало, не хватает входов прерывания.

В статье забыл упомянуть важное отличие дизельного двигателя от бензинового. В бензиновом моторе приготовление топливной смеси начинается с воздуха. Отсюда обязательные атрибуты любого ЭБУ для безнина: датчик давления воздуха (относительного или абсолютного), расходомер, датчик температуры. Регулировка двигателя тоже воздухом — дроссель.

На дизеле же смесь всегда обеднена, ни о каком стехиометрическом составе смеси нет и речи. В любом режиме воздуха хватает, это заложено самой конструкцией дизельного двигателя. Регулировка исключительно количеством топлива, и учитывать воздух при работе ЭБУ не нужно. Ситуация поменялась у Common Rail дизелей, там воздух считается так же как и на бензинках, хотя ошибки по количеству воздуха дизелям не критичны.

Автомобильный справочник

для настоящих любителей техники

Управление работой дизельного двигателя

Управление работой дизельного двигателя

В дизельном двигателе топливо всегда впрыскивается непосредственно в камеру сгорания под давлением от 200 до 2200 бар. В зависимости от конструкции, в двигателях с непрямым впрыском топливо впрыскивается в форкамеру под относительно низким дав­лением (менее 350 бар). В системах прямого впрыска топлива, получивших наибольшее распространение, топливо впрыскивается в неразделенную камеру сгорания под высо­ким давлением (до более чем 2200 бар). Вот о том, как происходит управление работой дизельного двигателя, мы и поговорим в этой статье.

Управление работой дизельного двигателя

Конструктивные требования к работе дизельного двигателя

Вырабатываемая дизельным двигателем мощ­ность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Кру­тящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомо­гательных агрегатов. Крутящий момент созда­ется в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой пода­ваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.

Кроме того, максимальный, зависящий от частоты вращения коленчатого вала кру­тящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической на­грузки всей кинематической цепи привода.

Основная функция системы управления дизельным двигателем

Основной функцией системы управления дви­гателем является регулирование создаваемого двигателем крутящего момента или, при некото­рых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диа­пазона (например, оборотов холостого хода).

В дизельном двигателе очистка отработав­ших газов и подавление шума осуществляются в значительной степени внутри самого двига­теля, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:

  • Заряд смеси в цилиндре;
  • Объем заряда смеси, подаваемого во время такта впуска;
  • Состав заряда смеси (рециркуляция отра­ботавших газов);
  • Движение заряда (завихрения на впуске);
  • Момент начала впрыска;
  • Давление впрыска;
  • Распределение впрыска топлива (напри­мер, предварительный впрыск, разделен­ный впрыск топлива и т.д.).

До начала 1980-х годов управление впры­ском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе вы­сокого давления количество подаваемого то­плива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имею­щего спиральную канавку. В случае механиче­ского регулирования начало впрыска/подачи топлива регулируется при помощи центробеж­ного регулятора (зависимого от скорости вра­щения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирова­ния давления в зависимости от нагрузки и частоты вращения коленчатого вала.

Точность регулирования

В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как темпе­ратура, частота вращения коленчатого вала, на­грузка и высота над уровнем моря. Это может быть обеспечено только при помощи электрон­ных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управ­ления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также нали­чия системы бортовой диагностики.

Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществля­ется системами EDC (электронная система управ­ления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулиро­вания величины подъема игольчатого клапана.

Электронная система управления дизельным двигателем

Электронная система управления дизель­ным двигателем позволяет осуществлять точную и дифференцированную модуляцию параметров процесса впрыска топлива. Это единственный способ удовлетворить самые разные требования, предъявляемые к совре­менному дизельному двигателю.

Обзор электронной системы управления дизельным двигателем

Конструктивные требования

Снижение расхода топлива и содержания вред­ных веществ (NOx, СО, НС, твердых частиц) в отработавших газах с одновременным повы­шением эффективной мощности двигателя являются главными задачами, стоящими перед разработчиками дизельных двигателей. За по­следние годы это привело ко все большему рас­пространению систем прямого впрыска топлива (DI), в которых давление впрыска значительно больше, чем в системах непрямого впрыска (IDI) с вихрекамерами или форкамерами. Кроме того, большое влияние оказывают возросшие требования к уровню комфорта современных автомобилей. Все более строгие требования предъявляются к уровню шума. В результате также значительно возросли требования, предъ­являемые к системам управления двигателем и впрыска топлива, в частности в отношении:

  • Высоких давлений впрыска;
  • Формирования параметров;
  • Предварительного и, при необходимости, последующего впрыска топлива;
  • Регулирования количества впрыскивае­мого топлива, давления наддувочного воз­духа и момента начала впрыска, в зависи­мости от условий работы двигателя;
  • Подачи дополнительного, зависимого от температуры, количества топлива при пу­ске двигателя;
  • Независимого от нагрузки регулирования частоты вращения коленчатого вала при работе двигателя на холостом ходу;
  • Регулируемой рециркуляции отработав­ших газов;
  • Системы круиз-контроля;
  • Высокой точности регулирования момента начала впрыска топлива и количества впрыскиваемого топлива на протяжении всего срока службы двигателя.

В обычных механических системах регули­рования частоты вращения коленчатого вала используется ряд регулирующих устройств, назначением которых является адаптация к различным условиям работы двигателя. Тем не менее, такие системы ограничиваются простым контуром регулирования, и существует ряд важ­ных переменных величин, которых они не могут учитывать или не могут достаточно быстро реа­гировать на их изменения. В связи с возросшими требованиями, относительно простые системы управления с использованием электрических исполнительных устройств развились в слож­ные электронные системы управления двигате­лем, способные обрабатывать большие объемы данных в режиме реального времени. Они могут составлять часть общей электронной системы управления автомобилем. Благодаря возросшей степени интеграции электронных компонентов, блоки управления чрезвычайно компактны.

Принципы действия системы ЕДС на дизельном двигателе

Электронная система управления дизельным двигателем (EDC) способна обеспечивать вы­полнение всех вышеуказанных требований, благодаря применению микропроцессоров.

В отличие от автомобилей с дизельными двигателями с обычным рядным или распреде­лительным топливным насосом высокого дав­ления, водитель автомобиля с EDC не оказывает прямого влияния на количество впрыскивае­мого топлива при помощи педали акселератора и троса управления дроссельной заслонкой. Вместо этого количество впрыскиваемого то­плива определяется рядом переменных величин. Это, например, команды водителя (положение педали подачи топлива), условия работы дви­гателя, температура двигателя, вмешательства других систем (например, системы управления тяговым усилием) и состав отработавших газов.

Момент начала впрыска также может регулиро­ваться. Все это требует наличия всеобъемлющей концепции системы мониторинга, определяющей несоответствия и инициирующей соответствую­щие действия (например, ограничение крутящего момента или переход на аварийный режим в диапазоне оборотов холостого хода). Отсюда следует, что электронная система управления ди­зельным двигателем должна содержать большое количество контуров регулирования.

Электронная система управления дизель­ным двигателем может осуществлять обмен данными с другими электронными системами, такими как система регулирования тягового усилия (TCS), электронная система управле­ния трансмиссией (ЕТС) или система курсо­вой устойчивости (ESP). Отсюда следует, что система управления двигателем может быть встроена в общую систему управления авто­мобилем, приобретая новые функции, такие как снижение крутящего момента двигателя во время переключения передач автоматической трансмиссией или регулирование крутящего момента для компенсации пробуксовки колес.

Система EDC полностью интегрирована в си­стему диагностики автомобиля. Она отвечает всем требованиям OBD (система бортовой диа­гностики) и E0BD (европейские нормы OBD).

Блоки системы управления дизельным двигателем

Электронная система управления дизельным двигателем (EDC) разделена на три блока (см. рис. «Компоненты электронной системы управления дизельным двигателем (EDC)» ).

Компоненты электронной системы управления дизельным двигателем (EDC)

Датчики и генераторы управляющих сигна­лов определяют условия работы двигателя (на­пример, частоту вращения коленчатого вала) и значения управляющих сигналов (например, по­ложение выключателей). Они преобразуют фи­зические переменные в электрические сигналы.

Блок управления двигателем обрабатывает сигналы датчиков и генераторов управляю­щих сигналов в соответствии с заложенными в нем алгоритмами вычислений (алгоритмами управления с обратной связью и без обрат­ной связи). Посредством электрических вы­ходных сигналов он осуществляет управление исполнительными механизмами. Кроме того, блок управления двигателем действует в ка­честве интерфейса с другими системами и с системой диагностики автомобиля.

Исполнительные механизмы (такие как электромагнитный клапан системы впрыска топлива) преобразуют электрические сиг­налы в механические параметры.

Обработка данных

Основная функция электронной системы управ­ления дизельным двигателем (EDC) — регули­рование количества впрыскиваемого топлива, момента начала впрыска и продолжительности впрыска. Система впрыска топлива с общей топливной магистралью также регулирует дав­ление топлива. Кроме того, блок управления дви­гателем осуществляет управление большим ко­личеством других исполнительных механизмов.

Для эффективной работы всех компонентов функции системы EDC на дизельном двигателе должны быть точно со­гласованы с каждым автомобилем и каждым двигателем. Это единственный способ оптими­зировать взаимодействие компонентов (см. рис. «Основные последовательности функционирования элементов электронной системы управления дизельным двигателем» ). Блок управления двигателем обрабатывает сигналы датчиков и ограничивает их до допусти­мого уровня напряжения. Некоторые входные сигналы также проверяются на предмет досто­верности. Используя эти входные данные и хра­нящиеся в памяти программы, микропроцессор вычисляет момент и продолжительность впры­ска топлива. Затем эта информация преобразуется в сигналы, согласованные с положениями поршней цилиндров двигателя. Эта программа вычислений имеет название «программное обеспечение блока управления».

Основные последовательности функционирования элементов электронной системы управления дизельным двигателем

Необходимая большая точность вместе с вы­сокими динамическими качествами двигателя требуют высокой вычислительной мощности. Выходные сигналы подаются на выходные каскады, обеспечивающие достаточную элек­трическую мощность для приведения в дей­ствие исполнительных механизмов (например, клапанов высокого давления системы впрыска топлива, клапана системы рециркуляции от­работавших газов или регулятора давления наддува). Кроме того, система осуществляет управление рядом вспомогательных компо­нентов (например, реле свечей накаливания и системой кондиционирования воздуха).

Отклонения характеристик сигналов опреде­ляются системой диагностики электромагнит­ных клапанов. Кроме того, блок управления осуществляет обмен сигналами и другими си­стемами автомобиля через соответствующие интерфейсы. Блок управления двигателем производит мониторинг всей системы впрыска топлива, являющийся частью общей стратегии обеспечения безопасности.

https://habr.com/ru/post/258619/

Управление работой дизельного двигателя

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *