Самодельный двигатель: назначение, устройство и принцип работы

Содержание

Самодельный двигатель: назначение, устройство и принцип работы. Как сделать двигатель

Уже давно разработан народными умельцами и пользуется спросом. Немало рыбаков уже опробовали такой электромотор, используя при этом всевозможные конструктивные решения для его изготовления. Стоит отметить, что присутствует тенденция в плане увеличения сборки электромоторов для лодки своими руками на основе дрели, поскольку заводской электрический мотор не каждому рыбаку по карману.

Сегодня мы расскажем, как сделать своими руками электромотор из дрели для своей лодки и что для этого потребуется.

Преимущества и технические особенности самодельного электромотора для лодки на основе дрели

Преимущества такого мотора будут следующими:

  • экономия на заводском дорогостоящем лодочном моторе ;
  • природоохранное законодательство предусматривает регламент в плане применения заводских электромоторов для лодок. Изделий, сделанных своими руками, это не касается;
  • почти бесшумная работа электромотора;
  • экономия по сравнению с применением двигателя внутреннего сгорания.
  • Прежде чем приступать к работе по сборке мотора своими руками, нужно выбрать дрель. Ключевым параметром выбора той или иной модели является ее мощность, которая должна составлять как минимум 150 Ватт.

Также следует учитывать такой параметр, как напряжение электромотора. Многие считают, что нужно использовать аккумуляторную дрель на 10 вольт, но это неправильно. Аккумулятор со временем испортится и его придется менять, а это будет очень дорого. Лучше брать дрель, работающую от напряжения в 12 вольт, для которой вы с легкостью подберете нужный аккумулятор , который легко подключится с помощью проводов и спокойно разместится в лодке.

Когда вы выбрали нужную дрель, следует подготовить остальной инструментарий , необходимый для дальнейшей работы:

  • труба с квадратным сечением;
  • струбцины;
  • редукторы;
  • металлическая трубка с диаметром от 20;
  • прут для вала;
  • металлический лист для крыльчатки;
  • сварочный аппарат;
  • саморезы;
  • болгарка;
  • шуруповерт.

Чтобы создать механизм подъема крыльчатки в лодке, следует приварить металлическую трубу к струбцинам . На этой трубе должна быть прикреплена база в виде каркаса усеченной пирамиды, которая направлена меньшим основанием в сторону воды. Вверху базы находится станина для подшипника, а внизу приваривают трубку. Через трубку и подшипник следует пропустить вал.

В его качестве применяют проволоку или трубку, диаметр должен быть поменьше, чтобы она не была тяжелой. Лучше всего подойдет трубка:

  • она обеспечивается подшипниками вверху и внизу;
  • трение будет меньшим;
  • будет отсутствовать вибрация вала в корпусе трубы.

Редукторы и пропеллер: техника установки и изготовления

С обеих сторон вала нужно установить редукторы. Их советуют устанавливать своими руками в зависимости от вида самого электромотора, чтобы правильно подобрать количество оптимальных оборотов, однако это очень сложно и долго.

Можно взять редуктор от старой техники или приобрести новый в магазине. Главное условие для него – передающее число не должно быть большим , желательно, чтобы он был способен понижать количество оборотов в пять раз. Ряд специалистов полагают, что это мало и будет недостаточно для того, чтобы лодка могла развивать нормальную скорость, но это вовсе не так.

Нижняя часть трубы оснащается редуктором от старой болгарки и добавляется крыльчаткой. Пропеллер можно взять готовый от старых устройств, например, им может послужить старый кулер от компьютера, но эта крыльчатка не сможет обеспечить водяной поток для быстрого движения лодки.

А своими руками его можно сделать на основе листов металла, это делается так:

  • вырежьте из жестяного листа квадрат со стороной в 30 см и просверлите в нем 4 отверстия от центра каждой из сторон к месту диагонального пересечения;
  • между прорезями должно оставаться расстояние по 5 см;
  • края «лепестков» нужно округлить и развернуть каждую лопасть на 30 градусов от оси;
  • при использовании редуктора от болгарки сделайте отверстие в центральной части и закрепите его на валу фиксирующей гайкой;
  • соедините верхний редуктор с дрелью. Будет отлично, если вал редуктора можно зажать в его головке. Тогда вал можно зажать и закрепить дрель к базе хомутами.

Если конструкция не соответствует размеру дрели, для соединения редуктора и электромотора применяют трубку, которую надевают на вал редуктора. Чтобы вал внутри не вращался, его нужно зафиксировать: сделать сквозь трубку сквозное отверстие и закрепить шпилькой.

Итак, наш лодочный электромотор почти готов к работе, осталось его только испытать. Для этого не нужно его сразу же ставить на лодку и включать ее. Сперва крыльчатку опускают в любую емкость, наполненную водой, а затем включают сам мотор. Вы должны руками ощутить создаваемый поток и проверить его работу, переключая разные режимы. Если вы чувствуете движение, то можно мотор, сделанный своими руками ставить на лодку и применять уже в водоеме. Во время тестовых работ мотор должен работать в обычном режиме и создавать нужный шумовой фон.

Однако такая конструкция самодельного электромотора для лодки имеет следующие недостатки:

  • мотор нельзя повернуть относительно вертикальной оси, поэтому при управлении лодкой придется использовать весла, а при рыбалке это неудобно;
  • самодельный лодочный мотор не имеет удобной системы управления.

Редуктор и его влияние на работу мотора

Стоит добавить, что правильно подобранный редуктор для мотора лодки является одним из ключевых условий для его надежной работы и длительности эксплуатации. Также не будет лишним просчитать максимально точно все нужные его расчеты. Это сделать самостоятельно будет непросто, поэтому этот вид работы можно доверить и специалисту, даже если вы делаете мотор своими руками. Если возможности обратится к специалисту у вас нет, то внимательно изучите все технические публикации касательно редукторов.

Например, некоторые любители утверждают, что в качестве лодочного редуктора отлично подойдет редуктор от обычного триммера. Вам потребуется лишь сам редуктор, вал и защитная трубка, которые следует соединить с двигателем.

Если говорить в целом о самодельном электромоторе для лодки, то он обойдется вам значительно дешевле заводского, но нельзя считать что он составляет его полноценную замену. Такой агрегат значительно уступает ему в плане скорости и мощности , также вы будете ограничены в плане выбора режимов работы.

Рассмотренный выше лодочный электрический мотор, выполненный своими руками, может развивать скорость порядка 8 километров в час, а зарядки аккумулятора от автомобиля для его работы хватает примерно на 5 часов.

Такой мотор подойдет для легковесной лодки с двумя пассажирами. Он работает плавно и бесшумно, им легко управлять и перевозить. Если у вас нет больших требований к мотору — смело можете приступать к его сборке своими руками.

Самодельный двигатель можно изготовить несколькими способами. Обзор начнем с биполярного или шагового варианта, который представляет собой электрический мотор с двойным полюсом без щеток. Он имеет питание постоянного тока, разделяет полный оборот на равные доли. Для функционирования данного прибора потребуется специальный контроллер. Кроме того, в конструкцию приспособления входит обмотка, магнитные элементы, передатчики, сигнализаторы и узел управления с панелью приборов. Основное предназначение агрегата — обустройство фрезеровочных и шлифовальных станков, а также обеспечение работы различных бытовых, производственных и транспортных механизмов.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

  • Варианты с магнитом постоянного действия.
  • Комбинированная синхронная модель.
  • Переменный двигатель.

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант — это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Биполярные варианты

Самодельный шаговый двигатель этого типа оборудован одной обмоткой фазы. Поступление тока в нее осуществляется переломным способом при помощи магнитного полюса, что обуславливает усложнение схемы. Она обычно агрегирует с соединяющим мостом. Имеется пара дополнительных проводов, которые не являются общими. При смешивании сигнала такого мотора на повышенных частотах эффективность трения системы снижается.

Создаются также трехфазные аналоги, имеющие узкую специализацию. Они применяются в конструкции станков с ЧПУ, а также в некоторых автомобильных бортовых компьютерах и принтерах.

Устройство и принцип работы

При передаче напряжения клеммам щетки двигателя приводятся в непрерывное вращение. Установка на холостом ходу уникальна, поскольку преобразовывает входящие импульсы в заранее определенную позицию имеющегося ведущего вала.

Любой импульсный сигнал воздействует на вал под конкретным углом. Такой редуктор максимально эффективен, если ряд магнитных зубцов размещен вокруг центрального зубчатого железного стержня или его аналога. Электрические магниты активируются от наружной контрольной цепи, состоящей из микрорегулятора. Для начала поворота вала двигателя один активный электромагнит притягивает к своей поверхности зубчики колеса. При их выравнивании по отношению к ведущему элементу они немного перемещаются к очередной магнитной детали.

В шаговом электродвигателе первый магнит должен включаться, а следующий элемент — деактивироваться. В результате шестерня начнет вращение, постепенно выравниваясь с предыдущим колесиком. Процесс повторяется поочередно требуемое число раз. Такие обороты и получили название «постоянный шаг». Скорость вращения мотора можно определить путем подсчета количества шагов для полного оборота агрегата.

Подключение

Подсоединение мини-двигателя, сделанного своими руками, осуществляется по определенной схеме. Основное внимание обращается на количество проводов привода, а также предназначение прибора. Моторы шагового типа могут оснащаться 4, 5, 6 или 8 проводами. Модификация с четырьмя элементами проводки может эксплуатироваться исключительно с биполярным приспособлением. Любая фазная обмотка имеет два провода. Для определения необходимой длины подключения в пошаговом режиме рекомендовано использовать обычный метр, позволяющий достаточно точно установить необходимый параметр.

На мощном шестипроводном двигателе предусмотрена пара проводов для каждой обмотки и центрирующий кран, который может подключаться к моно или биполярному устройству. Для агрегации с одиночным приспособлением используются все шесть проводов, а для парного аналога достаточно будет одного конца провода и центрального крана каждой обмотки.

своими руками?

Для создания элементарного мотора потребуется кусок магнита, сверло, фторопласт, проволока из меди, микрочип, провод. Вместо магнита можно использовать ненужный виброзвонок сотового телефона.

В качестве детали вращения используется сверло, поскольку инструмент оптимально подходит по техническим параметрам. Если внутренний радиус магнита не соответствует аналогичному аспекту вала, можно использовать медную проволоку, намотав ее таким образом, чтобы убрать люфт вала. Такая операция дает возможность увеличить диаметр вала в точке соединения с ротором.

В дальнейшем создании самодельного двигателя потребуется сделать втулки из фторопласта. Для этого возьмите подготовленный лист и проделайте отверстие диаметром 3 мм. Затем сконструируйте трубку-втулку. Вал необходимо отшлифовать до диаметра, обеспечивающего свободное перемещение. Это позволит избежать излишнего трения.

Финальная стадия

Далее производится намотка катушек. Каркас требуемого размера зажимается в тисах. Чтобы намотать 60 витков, понадобится 0,9 метра провода. После проведения процедуры катушка обрабатывается клеевым составом. Лучше всего эту деликатную процедуру проводить с микроскопом или увеличительным стеклом. После каждой двойной обмотки каплю клея внедряют между втулкой и проволокой. Один край каждой обмотки спаивается между собой, что даст возможность получить единый узел с парой выходов, которые паяются к микрочипу.

Параметры технического плана

Мини-двигатель, сделанный своими руками, в зависимости от конструкционных особенностей, может иметь различные характеристики. Ниже приведены параметры самых популярных шаговых модификаций:

  1. ШД-1 — обладает шагом 15 градусов, имеет 4 фазы и крутящий момент 40 Нт.
  2. ДШ-0,04 А — шаг составляет 22,5 градуса, количество фаз — 4, оборотистость — 100 Нт.
  3. ДШИ-200 — 1,8 градуса; 4 фазы; 0,25 Нт крутящего момента.
  4. ДШ-6 — 18/4/2300 (значения указаны по аналогии с предыдущими параметрами).

Зная, как сделать двигатель в домашних условиях, необходимо помнить о том, что скорость крутящего показателя шагового мотора будет трансформироваться прямо пропорционально аналогичному параметру тока. Понижение линейного момента на высоких скоростях напрямую зависит от схемы привода и индуктивности обмоток. Двигатели со степенью защиты IP 65 рассчитаны на суровые условия работы. По сравнению с серверами, шаговые модели работают намного дольше и продуктивнее, не требуют частого ремонта. Однако у серводвигателей немного другая направленность, поэтому сравнение этих типов не имеет особого смысла.

Делаем самодельный ДВС

Мотор своими руками также можно сделать на жидком топливе. При этом не потребуется сложное оборудование и профессиональный инструментарий. Необходима которую можно взять из тракторного или автомобильного топливного насоса. Цилиндр плунжерной втулки создается путем обрезки утолщенного элемента шлефа. Затем следует проделать отверстия для выхлопного и перепускного окна, припаять пару гаек в верхней части, предназначенных для свечей зажигания. Тип элементов — М-6. Поршень вырезается из плунжера.

Самодельный дизель-двигатель потребует установки картера. Он делается из жести с припаянными подшипниками. Дополнительную прочность позволит создать ткань, покрытая эпоксидной смолой, которой покрывается элемент.

Коленчатый вал собирается из утолщенной шайбы с парой отверстий. В одно из них необходимо запрессовать вал, а второе крайнее гнездо служит для монтажа шпильки с шатуном. Операция также производится методом прессовки.

Завершающие работы по сборке самодельного дизельного мотора

Ниже приведен порядок сборки катушки зажигания:

  • Используется деталь от авто или мотоцикла.
  • Устанавливается подходящая свеча.
  • Монтируются изоляторы, фиксируемые при помощи «эпоксидки».

Альтернативой мотору с системой ДВС может служить бесконтактный мотор замкнутого типа, устройство и принцип работы которого представляют систему обратного обмена газов. Он устроен из двухсекционной камеры, поршня, коленвала, передаточной коробки, системы зажигания. Зная, как сделать двигатель своими руками, вы можете существенно сэкономить и получить в хозяйстве нужную и полезную вещь.

статью о том, как сделать реактивный двигатель своими руками .

Внимание ! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой , а также проявлять крайнюю осторожность при работе с инструментами. В самоделке заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха. Автор не несёт ответственности за использование или неправильную трактовку информации, содержащейся в настоящей статье.

Шаг 1: Прорабатываем базовую конструкцию двигателя

Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.

Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.

Шаг 2:

Будьте внимательны при выборе турбокомпрессора! Вам нужен большой «турбо» с одной (не разделенной) турбиной. Чем больше турбокомпрессор, тем больше будет тяга готового двигателя. Мне нравятся турбины с крупных дизельных двигателей.

Как правило, важен не столько размер всей турбины, как размер индуктора. Индуктор – видимая область лопаток компрессора.

Турбокомпрессор на картинке – Cummins ST-50 с большого 18 колесного грузовика.

Шаг 3: Вычисляем размер камеры сгорания

В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.

В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.

Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.

Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.

Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.

Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.

Шаг 4: Подготовка торцевых колец КС

Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.

Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).

Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.

12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.

Шаг 5: Привариваем торцевые кольца

Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.

Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.

Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.

Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.

Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.

Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.

Шаг 6: Изготавливаем заглушки

Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.

Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.

На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок (одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).

Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.

Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.

Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.

Шаг 7: Собираем всё вместе

Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка должна быть похожа на вторую картинку ниже.

Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине.

Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.

Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.

Шаг 8: Изготавливаем рассеиватель

Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.

Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.

  • Основные отверстия подают воздух, который смешивается с топливом.
  • Вторичные отверстия подают воздух, который завершает процесс сгорания.
  • Третичные отверстия обеспечивают охлаждения газов до того, как они покинут камеру, таким образом, чтобы они не перегревали турбинных лопаток.

Чтобы сделать процесс расчета отверстия легким, ниже представлена , что будет делать работу за вас.

Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.

Шаг 9:

Теперь у вас есть готовый рассеиватель, откройте корпус КС и вставьте его между кольцами, пока он плотно не войдет. Установите крышку инжектора и затяните болты.

Для топливной системы необходимо использовать насос, способный выдавать поток высокого давления (по меньшей мере 75 л/час). Для подачи масла нужно использовать насос способный обеспечить давление в 300 тис. Па с потоком 10 л/час. К счастью, один и тот же тип насоса можно использовать для обеих целей. Мое предложение Shurflo № 8000-643-236.

Представляю схему для топливной системы и системы подачи масла для турбины.

Для надежной работы системы рекомендую использовать систему регулируемого давления с установкой обходного клапана. Благодаря ему поток, который прокачивают насосы всегда будет полным, а любая неиспользованная жидкость будет возвращена в бак. Эта система поможет избежать обратного давления на насос (увеличит срок службы узлов и агрегатов). Система будет работать одинаково хорошо для топливных систем и системы подачи масла. Для масляной системы вам нужно будет установить фильтр и масляный радиатор (оба из них будут установлены в линию после насоса, но перед перепускным клапаном).

Убедитесь, что все трубы, идущие к турбине выполнены из «жесткого материала». Использование гибких резиновых шлангов может закончиться катастрофой.

Ёмкость для топлива может быть любого размера, а масленый бак должен удерживать по меньшей мере 4 л.

В своей масляной системе использовал полностью синтетическое масло Castrol. Оно имеет гораздо более высокую температуру воспламенения, а низкая вязкость поможет турбине в начале вращения. Для снижения температуры масла, необходимо использовать охладители.

Что касается системы зажигания, то подобной информации достаточно в интернете. Как говорится на вкус и цвет товарища нет.

Шаг 10:

Для начала поднимите давление масла до минимума 30 МПа. Наденьте наушники и продуйте воздух через двигатель воздуходувкой. Включите цепи зажигания и медленно подавайте топливо, закрывая игольчатый клапан на топливной системе до тех пор, пока не услышите «поп», когда камера сгорания заработает. Продолжайте увеличивать подачу топлива, и вы начнете слышать рёв своего нового реактивного двигателя.

Спасибо за внимание

Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?

История

Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.

Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.

Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.

Принцип работы

Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.

Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.

Материалы для работы

Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:

  • жесть;
  • спица из стали;
  • трубка из латуни;
  • ножовка;
  • напильник;
  • подставка из дерева;
  • ножницы по металлу;
  • детали крепежа;
  • паяльник;
  • пайка;
  • припой;
  • станок.

Это все. Остальное — дело нехитрой техники.

Как сделать

Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.

На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.

Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.

Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.

Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.

Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.

Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.

Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.

На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.

Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.

Второй способ: материалы

Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:

  • консервная банка;
  • поролон;
  • скрепки;
  • диски;
  • два болта.

Как сделать

Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.

По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.

Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.

Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.

Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.

Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.

Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.

Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.

Затем один приклеивают к мембране, а другой — к вытеснителю.

Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.

Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.

Заключение

Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.

Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?

Можно, конечно купить красивые заводские модели двигателей Стирлинга, как например, в этом китайском интернет-магазине. Однако, иногда хочется творить самому и сделать вещь, пусть даже из подручных средств. На нашем сайте уже есть несколько вариантов изготовления данных моторов, а в этой публикации ознакомьтесь с совсем простым вариантом изготовления в домашних условиях.

Для его изготовления вам понадобятся подручные материалы: банка из под консервов, небольшой кусок поролона, CD-диск, два болтика и скрепки.

Поролон – одни из самых распространенных материалов, которые используются при изготовлении моторов Стирлинга. Из него делается вытеснитель двигателя. Из куска нашего поролона вырезаем круг, диаметр его делаем на два миллиметров меньше внутреннего диаметра банки, а высоту немного больше ее половины.

В центре крышки просверливаем отверстие, в которое вставим потом шатун. Для ровного хода шатуна делаем из скрепки спиральку и припаиваем ее к крышке.

Поролоновый круг из поролона пронизываем посередине винтиком и застопориваем его шайбой сверху и снизу шайбой и гайкой. После этого присоединяем путем пайки отрезок скрепки, предварительно распрямив ее.

Теперь втыкаем вытеснитель в сделанное заранее отверстие в крышке и герметично пайкой соединяем крышку и банку. На конце скрепки делаем небольшую петельку, а в крышке просверливаем еще одно отверстие, но чуть-чуть больше, чем первое.

Из жести делаем цилиндр, используя пайку.

Присоединяем с помощью паяльника готовый цилиндр к банке, так, чтобы не осталось щелей в месте пайки.

Из скрепки изготавливаем коленвал. Разнос колен нужно сделать в 90 градусов. Колено, которое будет над цилиндром по высоте на 1-2 мм больше другого.

Из скрепок изготавливаем стойки под вал. Делаем мембрану. Для этого на цилиндр надеваем полиэтиленовую пленку, немного продавливаем ее внутрь и закрепляем на цилиндре ниткой.

Шатун который нужно будет приделать к мембране, изготавливаем из скрепки и вставляем его в обрезок резины. По длине шатун нужно сделать таким, чтобы в нижней мертвой точке вала мембрана была втянута внутрь цилиндра, а в высшей – напротив – вытянута. Второй шатун настраиваем так же.

Шатун с резиной приклеиваем к мембране, а другой присоединяем к вытеснителю.

Присоединяем паяльником ножки из скрепок к банке и на кривошип пристраиваем маховик. Например, можно использовать СД-диск.

Двигатель Стирлинга в домашних условиях сделан. Теперь осталось под банку подвести тепло – зажечь свечку. А через несколько секунд дать толчок маховику.

Как сделать простой двигатель Стирлинга (с фотографиями и видео)

Давайте сделаем двигатель Стирлинга.

Мотор Стирлинга – это тепловой двигатель, который работает за счет циклического сжатия и расширения воздуха или другого газа (рабочего тела) при различных температурах, так что происходит чистое преобразование тепловой энергии в механическую работу. Более конкретно, двигатель Стирлинга представляет собой двигатель с рекуперативным тепловым двигателем с замкнутым циклом с постоянно газообразным рабочим телом.

Двигатели Стирлинга имеют более высокий КПД по сравнению с паровыми двигателями и могут достигать 50% эффективности. Они также способны бесшумно работать и могут использовать практически любой источник тепла. Источник тепловой энергии генерируется вне двигателя Стирлинга, а не путем внутреннего сгорания, как в случае двигателей с циклом Отто или дизельным циклом.

Двигатели Стирлинга совместимы с альтернативными и возобновляемыми источниками энергии, поскольку они могут становиться все более значительными по мере роста цен на традиционные виды топлива, а также в свете таких проблем, как истощение запасов нефти и изменение климата.

В этом проекте мы дадим вам простые инструкции по созданию очень простого двигателя DIY Стирлинга с использованием пробирки и шприца .

Как сделать простой движок Стирлинга – Видео

Компоненты и шаги, чтобы сделать моторчик Стирлинга

1. Кусок лиственных пород или фанеры

Это основа для вашего двигателя. Таким образом, он должен быть достаточно жестким, чтобы справляться с движениями двигателя. Затем сделайте три маленьких отверстия, как показано на рисунке. Вы также можете использовать фанеру, дерево и т.д.

2. Мраморные или стеклянные шарики

В двигателе Стирлинга эти шарики выполняют важную функцию. В этом проекте мрамор действует как вытеснитель горячего воздуха от теплой стороны пробирки к холодной стороне. Когда мрамор вытесняет горячий воздух, он остывает.

3. Палки и винты

Шпильки и винты используются для удержания пробирки в удобном положении для свободного перемещения в любом направлении без каких-либо перерывов.



4. Резиновые кусочки

Купите ластик и нарежьте его на следующие формы. Он используется для того, чтобы надежно удерживать пробирку и поддерживать ее герметичность. Не должно быть утечек в ротовой части пробирки. Если это так, проект не будет успешным.




5. Шприц

Шприц является одной из самых важных и движущихся частей в простом двигателе Стирлинга. Добавьте немного смазки внутрь шприца, чтобы поршень мог свободно перемещаться внутри цилиндра. Когда воздух расширяется внутри пробирки, он толкает поршень вниз. В результате цилиндр шприца перемещается вверх. В то же время мрамор катится к горячей стороне пробирки и вытесняет горячий воздух и заставляет его остывать (уменьшать объем).

6. Пробирка Пробирка является наиболее важным и рабочим компонентом простого двигателя Стирлинга. Пробирка изготовлена ​​из стекла определенного типа (например, из боросиликатного стекла), обладающего высокой термостойкостью. Так что его можно нагревать до высоких температур.


Как работает двигатель Стирлинга?

Некоторые люди говорят, что двигатели Стирлинга просты. Если это правда, то так же, как и великие уравнения физики (например, E = mc2), они просты: на поверхности они просты, но богаче, сложнее и потенциально очень запутаны, пока вы их не осознаете. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: многие очень плохие видео на YouTube показывают, как легко «объяснить» их очень неполным и неудовлетворительным образом.

На мой взгляд, вы не можете понять двигатель Стирлинга, просто создав его или наблюдая за тем, как он работает извне: вам нужно серьезно подумать о цикле шагов, через которые он проходит, что происходит с газом внутри, и как это отличается из того, что происходит в обычном паровом двигателе.

Все, что требуется для работы двигателя, – это наличие разницы температур между горячей и холодной частями газовой камеры. Были построены модели, которые могут работать только с разницей температуры 4 ° C, хотя заводские двигатели, вероятно, будут работать с разницей в несколько сотен градусов. Эти двигатели могут стать наиболее эффективной формой двигателя внутреннего сгорания.

Двигатели Стирлинга и концентрированная солнечная энергия

Двигатели Стирлинга обеспечивают аккуратный метод преобразования тепловой энергии в движение, которое может привести в движение генератор. Наиболее распространенная схема состоит в том, чтобы двигатель был в центре параболического зеркала. Зеркало будет установлено на устройство слежения, чтобы солнечные лучи фокусировались на двигателе.

* Двигатель Стирлинга как приемник

Возможно, вы играли с выпуклыми линзами в школьные годы. Сосредоточение солнечной энергии для сжигания листа бумаги или спички, я прав? Новые технологии развиваются день ото дня. Концентрированная солнечная тепловая энергия приобретает все большее внимание в эти дни.

Выше приведен короткий видеофильм о простом двигателе с пробиркой, использующим стеклянные шарики в качестве вытеснителя и стеклянный шприц в качестве силового поршня.

Этот простой двигатель Стирлинга был построен из материалов, которые доступны в большинстве школьных научных лабораторий и может быть использован для демонстрации простого теплового двигателя.

Диаграмма давление-объем за цикл

Процесс 1 → 2 Расширение рабочего газа на горячем конце пробирки, тепло передается газу, и газ расширяется, увеличивая объем и толкая поршень шприца вверх.

Процесс 2 → 3 По мере движения мрамора к горячему концу пробирки газ вытесняется из горячего конца пробирки на холодный конец, а по мере движения газа он отдает тепло стенке пробирки.

Процесс 3 → 4 Из рабочего газа отводится тепло, и объем уменьшается, поршень шприца движется вниз.

Процесс 4 → 1 Завершает цикл. Рабочий газ движется от холодного конца пробирки к горячему концу, поскольку мраморные шары вытесняют ее, получая тепло от стенки пробирки, когда она движется, тем самым увеличивая давление газа.

Самые популярные

    1 Замена свечей зажигания Nissan

Сделайте за 5 минут простой двигатель своими руками!

Электромотор за 5 минут

Для элементарного электромагнитного мотора нужны батарейка АА, две канцелярские скрепки, эмалированный провод диаметром 0,5 мм, клей или скотч, пластилин для крепления конструкции к столу, небольшой магнит, который должен быть не слишком большим и не слишком маленьким. Размер магнита должен быть примерно с диаметр катушки. Приобретают их в этом магазине.

Как сделать простой мотор.

Согните скрепки. Сделайте элементарную катушку в 6-7 витков из изолированного эмалью провода. Концы проволоки зафиксируйте на катушке узелком и зачистите один конец от изоляции на всю его длину, а второй также по всей длине но только с одной стороны.
Укрепите скрепки на батарейке клеем или другим материалом. Положите сверху батарейки магнит. Установите всю сборку на столе и закрепите. Установите катушку так, чтобы концы ее касались скрепки зачищенными сторонами. Когда по проводу побежит ток, возникает электромагнитное поле и катушка станет электромагнитом. Магнит следует положить так, чтобы полюса магнита и катушки были одинаковыми, тогда постоянный магнит и катушка-электромагнит будут отталкиваться друг от друга. Эта сила поворачивает катушку в самом начале поворота из-за того, что один конец зачищен по длине только с одного бока, он на мгновение теряется контакт и магнитное поле исчезает. По инерции катушка поворачивается, вновь восстанавливается контакт и цикл разворачивается снова. Как видите, сделать простейший моторчик своими руками совсем просто! Здесь более подробно описано, как сделать простой мотор, о котором шла речь выше.

Вся сборка магнитного двигателя на видео

Упрощенная модель мотора из батарейки и проволоки

Существует много типов электродвигателей, и их можно классифицировать по разным критериям. Один из них – это тип электроэнергии, поставляемой им. Мы можем различать двигатели постоянного и переменного тока.

Одним из первых двигателей постоянного тока постоянного тока был диск Faraday, который, как и многие двигатели, был реверсивной машиной. После поставки механической энергии он произвел электричество (однополярный генератор).

Сегодня мы собираемся построить простейшую, но рабочую модель двигателя постоянного тока.

Материалы

Материалы, необходимые для изготовления игрушки, можно найти в каждом доме. Нам нужно:

Небольшое количество проволоки в эмали с диаметром 0,3-0,6 мм
R6 – батарея 1,5 В
Магнит может быть небольшим
Вспомогательные материалы: олово, канифоль, фрагмент проволоки и часть универсальной печатной платы для «роскошной» версии
Конечно, нам также нужен паяльник с сопротивлением или сопротивлением трансформатора.

Мы работаем

Эмалированные провода должны быть намотаны на батарею, создавая небольшой круг, который будет служить обмоткой двигателя. Затем, с концами провода, оберните обмотку так, чтобы она не развивалась.

Чтобы крыльчатка была готова, вы все равно должны удалить изолирующую эмаль на концах провода, которая будет служить осью. Кроме того, один из них также будет примитивным коммутатором. Поэтому, если, с одной стороны, мы удаляем всю эмаль, с другой стороны, мы должны делать это только с одной стороны, сверху или снизу:

Самый простой способ сделать это – поместить выпрямленный конец провода на плоский воздух, например, на столешницу, а затем очистить эмаль сверху с помощью бритвенного лезвия. Напоминаю, что другой конец должен быть изолирован по периметру!

Наконец, выпрямите ось так, чтобы рабочее колесо было как можно более сбалансированным.

Затем сделайте два небольших обруча (подшипники), в которых ротор будет вращаться. Диаметр обода должен быть около 3 мм (лучше всего использовать гвоздь для намотки).

Куски проволоки с подшипниками необходимо припаять к батарее. Затем мы склеим из него небольшой магнит, чтобы один из его полюсов был направлен вверх. Все это должно выглядеть примерно так:

Если теперь включить ротор, он должен вращаться с высокой скоростью вокруг своей оси. Иногда требуется небольшой предварительный пуск, осторожно вращая ротор, пока он не «защелкнется». Эту модель электродвигателя, выполненную во время этого действия, можно увидеть на видео:

Мы также можем сделать более прочную версию этой физической игрушки. Я использовал большой магнит из старого динамика, который я прикреплял к универсальной печатной плате с фрагментами проводов. Также к нему припаяны более жесткие кронштейны. Плоская батарея 4,5 В находится под пластиной, а также под ней находятся кабели, которые обеспечивают напряжение на кронштейнах. Видимый с правой стороны перемычки функционирует как переключатель. Дизайн выглядит следующим образом:

Работа этой модели также изображается на видео.

Как и почему это работает?

Вся шутка основана на использовании электродинамической силы. Эта сила действует на каждый проводник, через который течет электрический ток, помещенный в магнитное поле. Его действие описано в правиле левой руки.

Когда ток проходит через катушку, электродинамическая сила действует на нее, потому что она находится в магнитном поле, создаваемом постоянным магнитом. Эта сила заставляет катушку вращаться до тех пор, пока ток не будет прерван. Это связано с тем, что одна из осей, через которые подается ток, изолирована только на половине периметра. Хотя сила больше не работает, катушка выполняет вторую половину вращения из-за своей инерции. Это продолжается до тех пор, пока ось не превратится в свою изолированную сторону. Схема будет закрыта, и цикл повторится.

Представленный электродвигатель – простая, но эффективная физическая игрушка. Отсутствие каких-либо разумных практических приложений делает игру очень приятной.

Получайте удовольствие и информативное развлечение!

Источник Источник Источник http://tdiesel.ru/samodelnyi-dvigatel-naznachenie-ustroistvo-i-princip-raboty-kak-sdelat.html
Источник Источник Источник http://izobreteniya.net/sdelayte-prostoy-dvigatel-svoimi-rukami/

Понравилась статья? Поделиться с друзьями: