Какие двигатели называются

Содержание

guarblog.ru

Какие двигатели называются. Какие бывают двигатели у автомобилей

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные , в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
  • инжекторные , в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
  • дизельные , в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Корпус двигателя объединяет в единый организм:

  • блок цилиндров , внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм , который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм , который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси ;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Определимся в терминологии. Такт — это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл — это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск . Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие . При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2-1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение . Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск . Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры , воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания . Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания . Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии . Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр) . Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник . Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр . Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка . Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор . Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.

Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:

  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла ; удаление продуктов нагара и износа ; защита металла от коррозии . Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор , или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров. Типы двигателей Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов: впуск воздуха или его смеси с топливом; сжатие рабочей смеси, рабочий ход при сгорании рабочей смеси; выпуск отработавших газов. Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели. Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания: в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам; в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем; двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ. Дизельный двигатель — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — «тяговиты на низах»). Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков: большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес; большей шумностью из-за особенностей процесса горения топлива в цилиндрах; меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты. Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание. Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала. Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала. Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания. Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров. Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива. Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр. Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов. Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом: рабочего объема. Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом; давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется «стуком поршневых пальцев») или ростом нагрузок в дизелях. Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации. Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент). Двигатели большей мощности производители получают увеличением: рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей; оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов; давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме. Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель. Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива. При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно. Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п. Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи. Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п. Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе. Пунктирной линией на графике показаны более оптимальные характеристики двигателя.

(двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Читайте в этой статье

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и , в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Такая система питания, особенно распределенный впрыск, позволяет увеличить мощность мотора, при этом достигается топливная экономичность и происходит снижение токсичности отработавших газов. Это стало возможным благодаря точной дозировке подаваемого топлива под управлением (электронная система управления двигателем).

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания. Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Если сравнивать дизельные и бензиновые ДВС, дизель отличается более высокой экономичностью, лучшим КПД и максимумом , который доступен на низких оборотах. С учетом того, что дизели развивают больше тяги при меньших оборотах коленвала, на практике такой мотор не нужно «крутить» на старте, а также можно рассчитывать на уверенный подхват с самых «низов».

Однако в списке минусов таких агрегатов можно выделить , а также больший вес и меньшие скорости в режиме максимальных оборотов. Дело в том, что дизель изначально «тихоходный» и имеет меньшую частоту вращения по сравнению с бензиновыми ДВС.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку. В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

К плюсам относят компактность, большую мощность при незначительном рабочем объеме, а также способность быстро раскручиваться до высоких оборотов. В результате автомобили с таким ДВС обладают выдающимися разгонными характеристиками.

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

На одних ДВС для получения необходимой мощности используется в комплексе с турбонаддувом, тогда как на других с точно таким же рабочим объемом и компоновкой такие решения отсутствуют.

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует либо перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях, либо создания вращающегося магнитного поля в самом статоре (классический пример — асинхронный трехфазный двигатель).

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

  • Электродвигатели постоянного тока
    Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
  • Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
  • Шаговые электродвигатели
    Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
  • Серводвигатели
    Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
  • Линейные электродвигатели
    Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
  • Синхронные двигатели
    Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
  • Асинхронные двигатели
    Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Обозначение серии электродвигателя:

  • АИР, А, 4А, 5А, АД, 7АVЕR — общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000
  • АИС, 6А, IMM, RA, AIS — общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)
  • АИМ, АИМЛ, 4ВР, ВА, АВ, ВАО2, 1ВАО, 3В — взрывозащищенные электродвигатели
  • АИУ, ВРП, АВР, 3АВР, ВР — взрывозащищенные рудничные электродвигатели
  • А4, ДАЗО4, АОМ, ДАВ, АО4 — высоковольтные электродвигатели

Признак модификации электродвигателя:

  • М — модернизированный электродвигатель (например: АДМ63А2У3)
  • К — электродвигатель с фазным ротором (например: 5АНК280A6)
  • Х — электродвигатель в алюминиевой станине (например: 5АМХ180М2У3)
  • Е — однофазный электродвигатель 220В (например: АИРЕ80С2У3)
  • Н — электродвигатель защищенного исполнения с самовентиляцией (например: 5АН200М2У3)
  • Ф — электродвигатель защищенного исполнения с принудительным охлаждением (например: 5АФ180М2У3)
  • С — электродвигатель с повышенным скольжением (например: АИРС180М4У3)
  • В — встраиваемый электродвигатель (например: АДМВ63В2У3)
  • Р — электродвигатель с повышенным пусковым моментом (например: АИРР180S4У3)
  • П — электродвигатель для привода вентиляторов в птицеводческих хозяйствах («птичник») (например: АИРП80А6У2)

Общепринятое климатическое исполнение ГОСТ — распространяется на все виды машин, приборов, электродвигатели и другие технические изделия. Полная расшифровка обозначения приведена далее.

Буква обозначает климатическую зону

  • У — умеренный климат;
  • Т — тропический климат;
  • ХЛ — холодный климат;
  • М — морской умеренно-холодный климат;
  • О — общеклиматическое исполнение (кроме морского);
  • ОМ — общеклиматическое морское исполнение;
  • В — всеклиматическое исполнение.
  • 1 — на открытом воздухе;
  • 2 — под навесом или в помещении, где условия такие же, как на открытом воздухе, за исключением солнечной радиации;
  • 3 — в закрытом помещении без искусственного регулирования климатических условий;
  • 4 — в закрытом помещении с искусственным регулированием климатических условий (вентиляция, отопление);
  • 5 — в помещениях с повышенной влажностью, без искусственного регулирования климатических условий

По типу работы данные двигатели делятся на:

  • синхронные двигатели;
  • асинхронные двигатели;.

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Ротор такого электродвигателя — это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

  • Однофазным — в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения. Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.
  • Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой). Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно — конденсатор).
  • Трехфазный асинхронный электродвигатель — наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса — изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре — для промышленной сети 50 Гц это 3000 об/мин). Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока. Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым: при подаче напряжения на статор он работает как электродвигатель, при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток. Основная область использования синхронных электродвигателей — высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов — это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора. В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Данные двигатели с наличием щёточно-коллекторного узла бывают:

  • Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
  • Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель — в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора. Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов. По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

Электродвигатель однофазный асинхронный

Устройство представляет собой асинхронный электромотор, в котором на статоре имеется только одна рабочая обмотка. Оборудование предназначено для подключения к однофазной сети переменного тока. Агрегат применяется для комплектации приводных систем промышленной и бытовой техники небольшой мощности — насосов, станков, шлифовальных машин, соковыжималок, мясорубок, вентиляторов, компрессоров и т. д.

Преимущества этого оборудования:

  • простая конструкция;
  • экономичное расходование электроэнергии;
  • универсальность (однофазный электродвигатель применяется во многих производственных сферах);
  • приемлемый уровень вибрации и шума во время работы;
  • повышенный срок эксплуатации;
  • устойчивость к различным типам перегрузок.

Отдельным плюсом однофазных электродвигателей указанных производителей является возможность подключения агрегата к сети 220 Вольт. Благодаря этому устройство может использоваться не только на производстве, но и для решения повседневных задач бытового плана. Представленные однофазные асинхронные электродвигатели легко подключаются и не требуют специального технического обслуживания

Электродвигатель трехфазный асинхронный

Агрегат представляет собой асинхронный мотор переменного тока, состоящий из ротора и статора с тремя обмотками. Устройство предназначено для подключения к трехфазной сети переменного тока. Этот асинхронный электродвигатель нашел широкое применение в промышленности: его нередко используют для комплектации мощного оборудования, например, компрессоров, дробилок, мельниц и центрифуг. Кроме того, агрегат включен в конструкцию многих устройств автоматики и телемеханики, медицинских приборов, а также различных станков и пил, предназначенных для применения в бытовых условиях.

Среди достоинств представленных устройств следует отметить:

  • высокие показатели эффективности и производительности;
  • универсальность (трехфазный асинхронный электродвигатель применяется в различных сферах деятельности);
  • низкий уровень вибрации и шума во время работы;
  • легкий, но при этом надежный и износостойкий корпус;
  • соответствие строгим требованиям европейских стандартов качества.

Кроме того, трехфазные асинхронные электродвигатели характеризуются простотой установки и длительным сроком службы. Стоит отметить, что на модели некоторых производителей можно установить дополнительные модули по запросу клиента. Например, трехфазные электродвигатели серии BN могут быть оснащены системой принудительного охлаждения, которая позволяет обеспечить исправную и эффективную работу агрегата на низких оборотах.

На сегодняшний день существуют бензиновые, карбюраторные, инжекторные и дизельные двигатели. Бензиновый двигатель принадлежит к классу двигателей внутреннего сгорания, в цилиндрах которых находится топливовоздушная смесь, поджигающаяся электрической искрой. Управляется он за счет регулирования воздуха, осуществляемого с помощью дроссельной заслонки.

Карбюраторные двигатели работают за счет горючей смеси, процесс приготовления которой происходит в карбюраторе. Сам карбюратор является специальным устройством, смешивающим топливо с воздушным потоком с помощью аэродинамических сил. Данные силы, в свою очередь, вызываются потоком воздуха, который засасывается карбюраторным двигателем.

В двигателях инжекторного вида топливо впрыскивается в воздушный поток специальными форсунками. Горючее подается к ним под давлением, а дозирование выполняется с помощью электронного блока управления, который открывает форсунку.

Дизельный двигатель является поршневым двигателем внутреннего сгорания, работающим за счет распыленного горючего, которое воспламеняется от соприкосновения с воздухом, разогревающимся при сжатии.

Новинки двигателестроения

Современный мир не стоит на месте – уже изобретен электродвигатель, который для работы использует электрическую энергию, черпая ее из топливных элементов или аккумуляторных батарей. Основной недостаток автомобилей, оснащенных электродвигателем – довольно небольшая емкость источника электроэнергии, что приводит к низкому запасу хода.

Также существует так называемая гибридная силовая установка, объединяющая в себе электродвигатель и двигатель внутреннего сгорания, которые связаны генератором. Передача энергии в гибридном автомобиле выполняется последовательно (двигатель внутреннего сгорания – генератор – электродвигатель – колесо) или параллельно. Наиболее распространенной является гибридная силовая установка с параллельной компоновкой (ДВС – трансмиссия – колесо и ДВС – генератор – электродвигатель – колесо).

Из чего состоит и как работает двигатель автомобиля?

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля , необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение .

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, .

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным . Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Все мы передвигаемся на автомобилях совершенно разных марок и моделей. Но, немногие из нас даже задумываются над тем, как устроен двигатель нашего автомобиля. По большому счёту, знать на все 100% устройство двигателя автомобиля и не обязательно. Ведь мы все пользуемся, например, мобильными телефонами, но это не означает, что мы обязаны быть гениями радиоэлектроники. Есть кнопка «Вкл», нажал и говори. Но с автомобилем немного другая история.

Ведь неисправный телефон – это всего лишь отсутствие связи с друзьями. А неисправный двигатель автомобиля – это наша жизнь и здоровье. От правильного обслуживания двигателя автомобиля зависят многие моменты движения автомобиля вообще и безопасности людей в частности. Поэтому, скорее всего, будет правильно уделить десять минут, чтобы понять из чего состоит двигатель автомобиля и принцип работы двигателя.

Пара шагов в историю создания двигателя автомобиля

Мотор (двигатель) в переводе с латыни motor , значит – приводящий в движение. В современном понимании, двигатель – это устройство, которое преобразует какую-либо энергию в механическую. В автомобилестроение наиболее распространенными двигателями являются ДВС (двигатели внутреннего сгорания) различных типов. Годом рождения первого ДВС считается 1801 г. тогда француз Филипп Лебон запатентовал первый двигатель, работающий на светильном газе. Затем были Жан Этьен Ленуар и Август Отто. Именно Август Отто в 1877 г. получил патент на двигатель с четырёхтактным циклом работы. И до сегодняшнего дня работа двигателя автомобиля, в основе своей работает по этому принципу.

В 1872 г. американцем Брайтоном был представлен первый двигатель на жидком топливе – керосине. Попытка была неудачной. Керосин не хотел активно взрываться внутри цилиндров. А в 1882 г. появился двигатель Готлиба Даймлера, бензиновый и работоспособный.

А теперь давайте разберемся какие все таки бывают типы двигателя автомобиля и к какому типу, прежде всего, можно отнести ваш автомобиль.

Какой у вас тип двигателя автомобиля?

С учетом того, что наиболее массовым в автомобилестроении является ДВС, рассмотрим, какие же типы двигателей установлены на наших автомобилях. ДВС не является самым совершенным типом двигателя, но благодаря своей 100% автономности, именно он и применяется в большинстве современных авто. Традиционные типы двигателей автомобиля:

  • Бензиновые двигатели . Делятся на инжекторные и карбюраторные. Существуют разные типы карбюраторов и системы впрыска. Вид топлива – бензин.
  • Дизельные двигатели . Дизельное топливо попадает в цилиндры через форсунки. Преимуществом дизельных двигателей является то, что им не нужно электричество для работы. Только для запуска двигателя.
  • Газовые двигатели . Топливом может служить, как сжиженные и сжатые природные газы, так и генераторные газы, полученные путем преобразования твердого топлива (уголь, дерево, торф) в газообразное.

Разбираем устройство и принцип работы двигателя автомобиля

Как работает двигатель автомобиля? При первом взгляде на разрез двигателя, несведущему человеку хочется убежать. Настолько всё кажется сложным и запутанным. На самом деле, при более глубоком изучении, строение двигателя автомобиля просто и понятно для того, чтобы знать принцип его работы. Знать, и при необходимости применять эти знания в жизни.

  • Блок цилиндров – его можно назвать рамой или корпусом двигателя. Внутри блока устроена система каналов для смазки и охлаждения двигателя. Он служит основой для навесного оборудования: головка блока цилиндров, картер и т.д.
  • Поршень – пустотелый металлический стакан. Верхняя часть поршня (юбка) имеет специальные канавки для поршневых колец.
  • Поршневые кольца . Верхние кольца – компрессионные, для обеспечения высокой степени сжатия воздушно-топливной смеси (компрессия). Нижние кольца – маслосъёмные. Кольца выполняют две функции: обеспечивают герметичность камеры сгорания и играют роль уплотнителей для того, чтобы масло не попадало в камеру сгорания.
  • Кривошипно-шатунный механизм . Передаёт возвратно-поступательную энергию движения поршня на коленвал.
  • Принцип работы ДВС достаточно прост. Из форсунок топливо подается в камеру сгорания и обогащается там воздухом. Искра от свечи зажигания воспламеняет воздушно-топливную смесь и происходит взрыв. Образовавшиеся газы толкают поршень вниз, тем самым заставляя его передавать своё поступательное движение коленвалу. Коленвал, в свою очередь, передаёт вращательное движение трансмиссии. Далее система шестерён передаёт движение колесам.

А уже колеса автомобиля везут несущий кузов вместе с нами в том направлении, куда нам необходимо. Вот такой принцип работы двигателя, мы уверены, будет вам понятен. И вы будете знать, что ответить, когда в автосервисе недобросовестные работники скажут, что вам нужно поменять компрессию, но на складе осталась одна, и та — импортная. Удачи вам в понимании устройства и принципа работы двигателя автомобиля.

Составляющие детали двигателя машины:

Цилиндр и картер, защищенный снизу поддоном;

Поршень с компрессионными кольцами, расположенный внутри цилиндра;

Коленчатый вал, который движется в коренных подшипниках картера.

Элементы коленчатого вала: коренные шейки, щеки и шатунные шейки. С помощью цилиндра, поршня, шатуна и коленчатого вала кривошипно-шатунный механизм приводит в движение поршни, в результате чего происходит вращение коленчатого вала.

Поверх цилиндров установлен блок головки с клапанами. Их открытие и закрытие технически согласовывается с вращением коленчатого вала, что приводит в последовательное движение поршень.

Поршень перемещается к верхней конечной точке (ВМТ) и нижней конечной точке (НМТ).

При работающем двигателе автомобиля, поршень движется без остановок от ВМТ до НМТ благодаря маховику в форме диска и напрессованного плотно на него металлического венца с зубьями виде обода.

Почему двигатель работает?

Работа двигателя основана на том, что при подаче топлива в камеру сгорания в положении ВМТ, от свечи запала подается искра и происходит мини-взрыв топлива. При этом давление взрывных газов выталкивает поршень до НМТ. В данном процессе поочередно оказываются задействованы все поршни двигателя, приводящие в движение криво-шатунный механизм коленчатого вала, что и позволяет автомобилю двигаться.

Для постоянной и правильно работы двигателя необходимо чтобы во впускной клапан периодически поступали новые порции воздуха и горючего через форсунки. Отработанные газы, после их сгорания, выталкиваются из камеры сгорания через выпускной клапан. За это отвечает механизм газораспределения автомобиля и система впрыска топлива.

Назначение систем и механизмов автомобильного двигателя

Кривошипно-шатунный механизм – приводит в возвратно-поступательное движение поршни, что влечет за собой вращение коленвала.

Система подачи топлива – служит для дозированного впрыска горючего в двигатель автомобиля.

Механизм газораспределения – отвечает за своевременный впуск и выпуск отработанных газов в двигателе.

Система зажигания – служит для подачи прерывистого сигнала электротока по бронепроводам высокого напряжения на свечи зажигания, в результате чего образуется искра в камере сгорания двигателя и происходит воспламенения горючей смеси.

Система охлаждения – защищает двигатель от перегрева посредством механического (встречного потока воздуха) либо статического включения принудительного обдува двигателя крыльчаткой, расположенной в непосредственной близости к радиатору.

Система смазки – обеспечивает подачу масла по маслоканалам к движущимся и трущимся механизмам, дабы уменьшить их износ. Маслосистема включает в себя поддон с маслом, насос, фильтры тонкой и грубой очистки, маслоканалы и масляные клапана.

Также автомобиль оборудован пусковым устройством, состоящим из аккумулятора, стартера, замка зажигания и другими приборами контроля, управления и обеспечения жизнедеятельности автомобиля.

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля, и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала. Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

Для не разбирающихся в механике двигатель может выглядеть как загадочная мешанина из металлических частей, труб, проводов и еще непонятно чего. Но как все это работает?

Задача двигателя преобразовать энергию топлива в энергию движения. Самый простой способ сегодня — это сжечь топливо внутри двигателя. А двигатели называются двигателями внутреннего сгорания.

Пару вещей, которые хотелось бы отметить:

  1. Существуют разные виды двигателей внутреннего сгорания. Бензиновые, дизельные, газо-турбинные и другие. В этой статье мы остановимся на бензиновых, как самых простых.
  2. Существуют и двигатели внешнего сгорания, например, паровые двигатели в старомодных паровозах или пароходах. Топливо (уголь, древесина, нефть) сжигается снаружи двигателя и нагревает воду для образования пара, который уже создает движение в двигателе. Причина, почему мы не рассматриваем в данной статье двигатели внешнего сгорания в том, что они намного менее эффективны, чем двигатели внутреннего сгорания. И намного более громоздки.

Ну а теперь сосредоточимся на двигателях внутреннего сгорания.

Четырехтактный двигатель. Иллюстрация (с) By Zephyris via Wikimedia Commons

Внутреннее сгорание

Все двигатели внутреннего сгорания используют следующий принцип: если вы поместите немножко топлива с большой энергией сгорания в небольшую закрытую камеру и подожжете его, то энергия топлива высвободится наружу в виде расширяющегося газа. Такой энергии (от взрыва топлива в одном цилиндре) было бы достаточно, чтобы выстрелить картофелиной на 150 метров из картофельной пушки. Но эту энергию лучше использовать для других, более интересных целей. Например, если создать некий замкнутый цикл, который позволит производить сотни похожих взрывов в минуту, и если удастся обуздать энергию этих взрывов, то… то мы получим двигатель автомобиля.

Почти все современные автомобили используют так называемый четырехтактный цикл по превращению топлива в движение. Цикл известен под названием цикла Отто, в честь немецкого инженера Николауса Отто, который построил первый практически используемый двигатель внутреннего сгорания. Четыре шага этого цикла (или такта) отображены на иллюстрации. Это:

  1. Впуск
  2. Сжатие
  3. Сгорание топлива (рабочий ход)
  4. Выпуск

Продолжая аналогию с картофельной пушкой, мы можем заметить, что в двигателе все немного сложнее: цилиндр заменяет картофельную пушку, поршень — картофелину. Поршни посредством шатунов толкают коленчатый вал. Коленвал, вращаясь, приводит к эффекту «перезаряда» пушки. Вот как это происходит (в соответствии с нашим циклом):

Из чего состоит воздушно-топливная смесь?

Воздушно-топливная смеси на самом деле почти полностью состоит из воздуха, так как для полного и эффективного сгорания 1 грамма бензина требуется 14.5 граммов воздуха, что составляет почти 12 литров! Таким образом, для эффективной работы двухлитрового атмосферного двигателя требуется всего по 44 миллиграмма бензина на цилиндр в каждый такт.

  1. Цикл начинается с верхнего положения поршня. Открывается впускной клапан, и поршень двигается вниз, позволяя двигателю набрать полный цилиндр смеси из воздуха и топлива. Это такт впуска.
  2. Начинается обратный ход поршня, при котором сжимается топливная смесь. Такое сжатие позволяет сделать «взрывы» топлива в цилиндре более мощными и эффективными.
  3. После того, как окончится сжатие и поршень достигнет верхнего положения, свеча с помощью разряда поджигает топливную смесь. Смесь вспыхивает, и энергия взрыва толкает поршень вниз. Этот такт работы двигателя называется рабочим ходом, потому, как только в этом такте совершается работа.
  4. Открывается выпускной клапан и выхлопные газы выталкиваются поршнем из цилиндра в выхлопную систему.

После завершения 4 такта мы оказываемся ровно в том же состоянии, что и перед началом первого такта, и мы можем повторять весь цикл и дальше.

Заметим также, что в отличии от картофельной пушки, где энергия превращается в поступательное движение, в двигателе внутреннего сгорания энергия трансформируется во вращательное движение. Это, в принципе, неплохо, так как мы в дальнейшем планируем вращать колеса.

А теперь давайте рассмотрим из каких частей состоит двигатель.

Основные части двигателя

Основа двигателя — это цилиндр и поршень, двигающийся в цилиндре вверх и вниз. На иллюстрации выше был показано мотор, состоящий из одного цилиндра. Такие моторы чаще всего используются для газонокосилок и другой мото-техники. Большинство автомобилей использует двигатель с несколькими цилиндрами (4, 6 и 8 — самые распространенные комбинации). Цилиндры могут располагаться в двигателе тремя способами: рядным, V-образным, или оппозитным, и по расположению цилиндров двигатель называют рядным, V-образным или оппозитным (вообще-то способов больше, но эти три основные). Примеры такого расположения можно посмотреть на иллюстрациях.

Каждое расположение цилиндров имеет свои преимущества и недостатки, такие как плавность работы, стоимость изготовления, размеры и расположение в подкапотном пространстве.

Что касается поршней, то их основная задача — это передавать энергию расширения газа при горении на коленчатый вал, создавать вакуум в цилиндре для всасывания воздушно-топливной смеси на такте впуска, выталкивать выхлопные газы на такте выпуска, а также сжимать топливную смесь на такте сжатия. Все эти задачи накладывают на поршни очень высокие требования: они должны быть легкими, малоизнашивающимися, прочными, терпимыми к высоким температурам, должны хорошо проводить тепло, иметь высокую коррозионную стойкость и антифрикционные свойства.

Помимо цилиндров и поршней есть и другие детали:

Свечи зажигания

Свечи зажигания — по одной на каждый цилиндр. В нужный момент с помощью электрического разряда свеча производит искру, с помощью которой поджигается топливная смесь. В старых двигателях момент зажигания определялся «коммутатором» в зависимости от положения распределительного вала (например, с помощью контактного кулачка или с помощью магнитного датчика). В современных двигателях этот момент определяется электронным блоком управления двигателем, на основании информации от датчиков (детонации, датчика положения распределительного вала, лямбда-зонда и других).

Клапаны

Клапаны впуска и выпуска открываются в нужный момент чтобы впустить топливную смесь в цилиндр или, наоборот, выпустить выхлопные газы. Чтобы двигатель работал исправно, клапаны должны быть герметично закрыты во время тактов сжатия и воспламенения. На каждый цилиндр необходимо как минимум два клапана (один на впуск, другой на выпуск), но для увеличения мощности на современные двигатели ставят и по 3, и по 4 и даже по 5 клапанов (как, например, в Audi A8 с 2003 года) на цилиндр. Увеличение числа клапанов увеличивает скорость, с которой могут происходить такты впуска и выпуска, а значит увеличивает максимальное число оборотов двигателя и его мощность. К сожалению, это не панацея, и конструкции с 6 клапанами на цилиндр встречаются сейчас только в автоспорте из-за сложности и громоздкости конструкции.

Поршневые кольца

Поршневые кольца — незамкнутые кольца, которые с небольшим зазором (до нескольких сотых долей миллиметра) посажены в канавках на внешних поверхностях поршней. Кольца служат двум целям: уплотнение камеры сгорания, препятствуя проникновению газов в промежуток между цилиндром и поршнем и уменьшение расхода масла, препятствуя проникновению масла в камеру сгорания, где оно сгорело бы и вышло с выхлопными газами. На каждом поршне размещается несколько поршневых колец.

Большинство машин, которые «жрут масло» и требуют постоянного долива по 500 мл и больше на каждую 1000 километров скорее всего имеют изношенные поршневые кольца, которые не обеспечивают тщательного удаления масла из камеры сгорания.

Коленчатый вал и шатуны

Коленчатый вал и шатуны. На коленчатый вал с помощью шатунов (по одному шатуну на каждый цилиндр) передается энергия расширяющихся газов от двигателя, превращаясь из поступательной во вращательную. Вал имеет сложную форму, с коленцами и шейками для крепления шатунов. Именно на коленчатый вал приходятся все лошадиные силы вашего мотора, поэтому он должен быть необычайно прочным.

Картер

Картер — основная корпусная часть мотора, изолированное внутреннее пространство картера образует самую большую полость в двигателе, содержащую коленчатый вал. Верхняя часть картера содержит блок цилиндров. Картер предназначен для опоры деталей двигателя, их защиты от пыли и грязи, а также размещения запаса смазочного масла. Масло с помощью насоса распределяется по двигателю, смазывая все детали, и самотеком, обратно возвращается в поддон картера. Вращаясь на больших оборотах в картере, коленвал (а он даже на холостом ходу совершает до 1000 оборотов в минуту), образует взвесь масла в воздухе, что обеспечивает дополнительную смазку для всех деталей.

Газораспределительная система

Распределительный вал (вместе с газораспределительным механизм) обеспечивает слаженную работу всех клапанов. Распределительный и коленчатый вал связаны с помощью специального ремня (Ремень ГРМ) или цепи, которая вращает распределительный вал с половинной угловой скоростью коленчатого. Распределительный вал имеет кулачки особой формы, которые один раз за оборот надавливают на клапан, заставляя его открыться (а обратное закрытие происходит с помощью пружины).

Карбюратор

Карбюратор готовит топливно-воздушную смесь. При впуске давление в цилиндрах двигателя понижается. Наружный воздух засасывается в цилиндр, проходя через смесительную камеру карбюратора, в которой находится диффузор, позволяющий распылять топливо в зависимости от количества поступающего воздуха. В современных автомобилях карбюратор заменен на специальную систему впрыска (инжектор), которая управляется специальным электронным блоком управления (ЭБУ). ЭБУ на основании информации от датчиков дает команду форсункам подать ровно отмеренное количество топлива в нужный момент, а форсунки, соответственно, распыляют это топливо в воздух, поступающий в цилиндры.

Другие системы

В данной статье мы умышленно оставили за кадром другие вспомогательные системы, такие как системы охлаждения, смазки, выхлопа, электрические системы. Все это — тема для отдельной статьи.

Источник http://guarblog.ru/kakie-dvigateli-nazyvayutsya-kakie-byvayut-dvigateli-u/
Источник Источник http://toolsenergo.ru/what-does-the-car-engine-consist-of-and-how-does-it-work.html

Понравилась статья? Поделиться с друзьями: