Расчет скорости автомобиля по передаточным числам

Содержание

Расчет скорости автомобиля по передаточным числам

Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

Расчет скорости автомобиля по передаточным числам

Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

Общее определение

Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

Передачи с крутящим моментом

В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.

Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

Расчет скорости автомобиля по передаточным числам

Переходной конструкцией является ременная зубчатая передача.

На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

Характеристика зубчатой передачи

В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

Модуль – размер между одинаковыми точками двух соседних зубьев.

Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

Расчет скорости автомобиля по передаточным числам

Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

Зачем нужна паразитка

При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:

  • количества оборотов;
  • мощности;
  • направление вращения.

Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.

Расчет скорости автомобиля по передаточным числам

Виды зубчатых соединений

Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:

Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.

Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.

Недостаток косозубых зацеплений в дополнительной нагрузке на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.

Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.

В конической зубчатой передаче оси расположены под углом. Рабочий элемент нарезается по конической плоскости. Передаточное число таких пар может равняться 1, когда надо только изменить плоскость действия силы. Для увеличения мощности нарезается полукруглый зуб. Передающееся количество оборотов считается только по зубу, диаметр в основном используется при расчетах габаритов узла.

Расчет скорости автомобиля по передаточным числам

Винтовая передача имеет зуб, нарезанный под углом 45⁰. Это позволяет располагать оси рабочих элементов перпендикулярно в разных плоскостях.

У червячной передачи нет шестерни, ее заменяет червяк. Оси деталей не пересекаются. Они расположены перпендикулярно в пространстве, но разных плоскостях. Передаточное число пары определяется количеством заходов резьбы на червяке.

Кроме перечисленных производят и другие виды передач, но они встречаются крайне редко и к стандартным не относятся.

Многоступенчатые редукторы

Как подобрать нужное передаточное число. Двигатель обычно выдает несколько тысяч оборотов в минуту. На выходе – колесах автомобиля и шпинделе станка, такая скорость вращения приведет к аварии. Мощности исполняющего механизма не хватит, чтобы рабочий инструмент мог резать металл, а колеса сдвинули автомобиль. Одна пара зубчатого зацепления не сможет обеспечить требуемое понижение или ведомая деталь должна иметь огромные размеры.

Создается многоступенчатый узел с несколькими парами зацеплений. Передаточное число редуктора считается как произведение чисел каждой пары.

Uр – передаточное число редуктора;

Перед тем как подобрать передаточное число редуктора, надо определиться с количеством пар, направлением вращения выходного вала, и делать расчет в обратном порядке, исходя из максимально допустимых габаритов колес.

Расчет скорости автомобиля по передаточным числам

В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.

Редуктор и коробка скоростей

Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.

Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.

Трансмиссия автомобиля

В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение — передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.

В состав трансмиссии входит несколько редукторов. Это, прежде всего:

  • коробка передач – скоростей;
  • дифференциал.

Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.

Посредством переключения – перемещения вала, шестерни на валу соединяются поочередно с разными колесами. При включении задней скорости, через паразитку меняется направление вращения, автомобиль в результате движется назад.

Расчет скорости автомобиля по передаточным числам

Дифференциал представляет собой конический редуктор с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойство хромо-никелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чес больше зацеплений, соединений и подшипников, тем меньше КПД.

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;

Расчет скорости автомобиля по передаточным числам Расчет скорости автомобиля по передаточным числам

Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Чтобы рассчитать, что у вас получилось после изменения передаточных чисел передач коробки переключения в автомобиле, нужно воспользоваться формулой Va = Nc * 60 * 2Пи * R / (1000 *iп * iгп).

В данной формуле:

– Va означает скорость автомобиля (км/ч);
– Nc означает количество оборотов коленчатого вала;
– R показывает динамический радиус колеса и измеряется в метрах;
– iп является передаточным числом передачи;
– iгп является передаточным числом главной пары.

Стоит отметить только, что формула дает возможность определить скорость на текущей передаче при текущих оборотах мотора автомобиля, но не позволяет определить разгонную динамику автомобиля.

Если вернуться к автоспорту, то можно сказать еще о таких моментах. Гонка требует максимально четкое и быстрое включение выбранной передачи. Этого можно добиться различными способами. Например, стандартные механизмы в системах, оснащенных тяговым включением передач (устанавливаются на переднеприводные ВАЗы, а также ряд моделей марки Volkswagen) не обеспечивают должной четкости «попадания в передачу». По этой причине конструкция таких систем подергается модернизации с помощью замены пластика более жестким пластиком, а соединений шпилька-шплинт на ШС.

Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.

Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)

Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска. Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 – покрышка радиальной конструкции диаметром 14 дюймов.
Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль.
Нажмите кнопку «Рассчитать КПП».

Расчет допустимой скорости автомобиля по диаметру шин и оборотов коленвала двигателя

Расчет максимальной скорости автомобиля

Привет друзья! Более года ничего не писал в свой блог, но сегодня что-то пошло не так . Не туда забрел, не там почитал, и пришло вдохновение, желание двигаться вперед.

Это будет не информационный пост как обычно, а некий мануал, калькулятор, который в зависимости от заданных типоразмеров шин, оборотов мотора и указанных передаточных чисел коробки рассчитает, какая будет скорость движения у автомобиля на передачи.

Расчет скорости автомобиля по передаточным числам

Конечно, калькулятор скорости автомобиля по передаточным числам и шинам производит расчет в идеальных (лабораторных) условиях. В реальных же условиях на конечную скорость автомобиля влияет очень много факторов, начиная от климатических условий и состояния дорожного полотна, и заканчивая настройкой мотора. Другими словами, калькулятор показывает потенциал коробки передач, до какой максимальной скорости она способна разогнать автомобиль.

Калькулятор расчет максимальной скорости автомобиля и КПП

КПП #1 КПП #2
Диаметр (R) колеса * :
Ширина колеса:
Профиль колеса:
Обороты двигателя:
Передаточное число главной пары:
Передаточное число 1 й передачи:
Передаточное число 2 й передачи:
Передаточное число 3 й передачи:
Передаточное число 4 й передачи:
Передаточное число 5 й передачи:
Передаточное число 6 й передачи:

Прогноз максимальной скорости движения авто на передаче:

1 я передача: 23.68 км/ч 24.43 км/ч
2 я передача: 36.34 км/ч 41.52 км/ч
3 я передача: 52.47 км/ч 58.01 км/ч
4 я передача: 69.1 км/ч 73.3 км/ч
5 я передача: 90.21 км/ч 93.04 км/ч
6 я передача: нет км/ч нет км/ч

* Для сликов маркированных в дюймах вводите только R колеса (вводить ширину и профиль не надо).

По умолчанию в калькуляторе расчета передаточных чисел КПП указаны характеристики коробок S4C (КПП #1) и S9B (КПП #2). Выбрал эти коробки не случайно, т.к. первая устанавливалась на Civic EK9, а вторая считается самой длинной МКПП для Б-моторов.

Размеры шин, количество оборотов двигателя, передаточные числа КПП и главную пару Вы можете подставлять на свое усмотрение. Калькулятором представляет собой универсальное средство, поэтому не стоит зацикливаться, что он работает только на КПП предназначенных для Хонды. Коробку ВАЗ’ика он тоже рассчитает без проблем

Внимание ! Калькулятор КПП и максимальной скорости движения автомобиля предоставлен исключительно в ознакомительных целях и не гарантирует 100% достоверных данных!

На форуме есть несколько тем, посвященных Honda коробкам, из которых Вы можете узнать передаточные числа для калькулятора. Информация еще не полная, но со временем, усилиями сообщества обновим топики и сделаем полную подборку характеристик:

— КПП и передаточные числа для моторов B серии;
— КПП и передаточные числа для моторов K серии;
— КПП и передаточные числа для моторов H серии;
— КПП и передаточные числа для моторов F серии.

В завершении поста, хочу заметить, что при установке на автомобиль дисков большего диаметра или шин отличных от стокового типоразмера, спидометр будет выдавать не совсем корректные данные. Единицы отдают его на калибровку, чтобы снимать точные показания, в 99.999% случаев автовладельцы оставляют все как есть. Чтобы узнать, насколько спидометр «обманывает» Вас, в блоге есть еще один полезный инструмент:

Спасибо за внимание и отдельный респект всем тем, кто поделился ссылкой на пост

P.S. По давней традиции, не забывайте подписываться на обновления проекта и нашего паблика ВКонтакте, рассказывать друзьям о проекте, делиться в сети ссылками на интересные посты, оставлять развернутые комментарии по теме, делать ретвиты, ставить лайки, нажимать на «мне нравится», добавлять посты в гугл плюс и . И конечно же, САМОЕ-САМОЕ ГЛАВНОЕ — приглашаю всех на форум любителей хонда . С момента последнего поста много чего изменилось и форум тоже. Жду всех на форуме

Расчет допустимой скорости автомобиля по диаметру шин и оборотов коленвала двигателя

Дайте формулы как расчитать, а в идеале дайте формулу и расчитайте пожалуйста, чтобы я раз и на всю оставшуюся жизнь запомнил на примере.
Интересует следующее:
1) Сколько оборотов при всех вышеприведенных данных мы получаем на ступице автомобиля, соответственно оборотов колеса?
2) Какова будет скорость автомобиля исходя из поученных и приведенных данных?

Прошу прощения за свою математическую безграмотность, но очень хочу рассчитать все как надо без косяков.

P.s. решение задачки напишите пожалуйста с объяснением кратенько, чтобы я понял и запомнил.

Ничего сложного.
Формулы приводить не буду, чтоб лишний раз не запутывать, просто объясню, как считать.
1. Не путать размерные единицы. Минуты, секунды и часы. Метры и дюймы.

Значить, так.
движок выдает те самые условные 2000 оборотов в минуту
ровно столько же делает и входной вал КПП.
Какая передача включена в КПП?
ДЕЛИМ! на передаточное число. Если включена прямая — понятно, передаточное число 1. Если включена пятая (где она есть) повышающая — ее передаточное число меньше 1 и обороты на выходе КПП будут больше.
Во всех остальных случаях меньше.
Дальше делим на передаточное число раздатки. Получаем, с какой частотой (те же об/мин) вращаются карданные валы.
Дальше делим на передаточное число мостов. Если колхозы — передаточное число главной передачи, если вояки — произведение передаточных чисел главной передачи и колесных редукеторов.
В итоге — частота вращения колес в тех же единицах, что и брались обороты двигатеоля (об/мин)
Отдельно вычисляем длинну беговой дорожки покрышки. (3,14159*диаметр). Длину сразу перевести в метры.
Если внимательно посмотреть на колесо, то оно в точке касания земли несколько сплющено, для учета этой деформации пролученную длину беговой дорожки надо умножить на 0,995. Коэффичиент примертный и зависит от конструкции покрышки и насколько она накачена .

Осталось только перемножить обороты колеса и длину беговой дорожки.
Обороты в мин. множим на метры — получаем скорость в метрах в мин.
если полученную величину разделить на 60 — будет скорость в метрах в сек., а если помножить на 60 и разделить на 1000 — будет в км/ч.

Ничего сложного.
Формулы приводить не буду, чтоб лишний раз не запутывать, просто объясню, как считать.
1. Не путать размерные единицы. Минуты, секунды и часы. Метры и дюймы.

Значить, так.
движок выдает те самые условные 2000 оборотов в минуту
ровно столько же делает и входной вал КПП.
Какая передача включена в КПП?
ДЕЛИМ! на передаточное число. Если включена прямая — понятно, передаточное число 1. Если включена пятая (где она есть) повышающая — ее передаточное число меньше 1 и обороты на выходе КПП будут больше.
Во всех остальных случаях меньше.
Дальше делим на передаточное число раздатки. Получаем, с какой частотой (те же об/мин) вращаются карданные валы.
Дальше делим на передаточное число мостов. Если колхозы — передаточное число главной передачи, если вояки — произведение передаточных чисел главной передачи и колесных редукеторов.
В итоге — частота вращения колес в тех же единицах, что и брались обороты двигатеоля (об/мин)
Отдельно вычисляем длинну беговой дорожки покрышки. (3,14159*диаметр). Длину сразу перевести в метры.
Если внимательно посмотреть на колесо, то оно в точке касания земли несколько сплющено, для учета этой деформации пролученную длину беговой дорожки надо умножить на 0,995. Коэффичиент примертный и зависит от конструкции покрышки и насколько она накачена .

Осталось только перемножить обороты колеса и длину беговой дорожки.
Обороты в мин. множим на метры — получаем скорость в метрах в мин.
если полученную величину разделить на 60 — будет скорость в метрах в сек., а если помножить на 60 и разделить на 1000 — будет в км/ч.

Есть же калькулятор просто и понятно.

Выбираешь колеса или свои заносишь трансмиссию тоже выбираешь из предложенных или свою
В низу вписываешь обороты мотора и видишь на какой передаче с какой скоростью поедешь.

Максимальная скорость автомобиля по диаметру колеса и оборотам двигателя

Да, такие ситуации случаются довольно часто. Едешь себе положенных 90 км/час, а на дороге ни одной машины: ни попутной, ни встречной. Кажется, сейчас бы плюнуть бы сейчас на вон тот знак с ограничением максимальной скорости, вдавить педаль газа в пол и прокатиться с ветерком. Да как-то боязно за сохранность своих прав, ведь не факт, что за следующим поворотом в тебя не будет своим радаром «стрелять» сотрудник ДПС. А как Вы смотрите на то, чтобы установить в своём автомобиле детектор радара или антирадар?

Вполне удобная, относительно недорогая и эффективная вещь. Принцип работы детектора заключается в том, что он улавливает сигнал, посланный радаром, и заблаговременно предупреждает водителя, что стоит сбросить скорость, дабы не иметь проблем с сотрудниками ДПС. Если погода солнечная, а рельеф местности достаточно ровный, детектор работает вполне эффективно и ловит сигнал радара на расстояние до 5-ти километров. За это время можно спокойно сбросить скорость.

Но у детекторов радара есть свои недостатки. И главный недостаток заключается в том, что его использование запрещено. Если работник ДПС найдёт его, он имеет полное право его изъять, да ещё выписать штраф. Ещё одним недостатком такого способа узнать о присутствии контроля скорости на дороге является то, что детектор радара реагирует на не на «выстрел» в ваш автомобиль, а на впереди идущий. Так что если едите в одиночестве, лучшим вариантом будет соблюдение скоростного режима.

Принцип работы антирадара достаточно прост и при этом эффективен. Он создаёт помеху радару ДПС. Итог – скорость на радаре ДПСника либо вообще не показывается, либо он видит ту скорость, на которую запрограммированно ваше устройство.

К недостаткам таких устройств можно отнести достаточно высокую стоимость, ну и конечно же незаконность установки. Антирадары, также как и детекторы радара, запрещены и в случае обнаружения сотрудником ДПС такого устройства в Вашем автомобиле, Вы рискуете его лишиться и получить штраф.

Перед тем как устанавливать в автомобиле какие–либо аппараты, корректирующие или блокирующие работу радаров, задумайтесь об их целесообразности. А может не стоит рисковать и лучше уж ехать законные 90 км/ч?

EasyFizika

Условие задачи:

Найти скорость движения автомобиля, если его колесо диаметром 1,1 м делает 309 оборотов в минуту.

Задача №1.8.3 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

(D=1,1) м, (nu=309) об/мин, (upsilon-?)

Решение задачи:

Расчет скорости автомобиля по передаточным числамСтрого говоря, относительно Земли точки колеса при движении автомобиля совершают сложное движение, при котором они двигаются и поступательно, и вращательно. Но если перейти в систему отсчета (СО), связанную с автомобилем, то колеса будут уже совершать простое вращательное движение. При этом понятно, что линейная скорость крайних точек колеса равна скорости движения автомобиля (upsilon).

Эту линейную скорость можно определить по такой формуле, учитывая, что радиус равен одной второй диаметра:

Угловую скорость (omega) найдем, используя частоту вращения (nu), данную в условии, по такому выражению:

Подставим (2) в (1):

Перед тем, как подставлять значения и вычислять ответ, переведем частоту вращения в систему СИ.

[upsilon = 3,14 cdot frac > > cdot 1,1 = 17,79; м/с]

Ответ: 17,79 м/с.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Если Вам понравилась задача и ее решение, то Вы можете поделиться ею с друзьями с помощью этих кнопок.

4 мысли о « Найти скорость движения автомобиля, если его колесо диаметром 1,1 м делает »

как узнать скорость, если диаметр колеса 39 см, а скорость вращения 900 оборотов в секунду?

Таким же образом, используете такую же формулу:
v=3,14⋅900⋅0,39=1102,14 м/с
Вероятно скорость вращения все-таки 900 оборотов в минуту, иначе, как Вы видите, мы получаем невероятную скорость в 1,1 км/с. Если я прав, то ответ будет таким:
v=3,14⋅900/60⋅0,39=18,37 м/с

Есть ошибка с переводом единиц в систему Си.

v=3,14 * 900 (оборотов в минуту) * 0,39 (метра) = 1102,14 м/мин

Именно метра в минуту.
Не может быть 1102,14 м/с, если у нас вращение
900 оборотов в минуту.

Далее 1102,14 м/мин =
1102,14 * 60 минут / 1000 метров = 66,13 км/час

Вывод: при размере колеса в 39 см (15,35 дюймов) и скорости вращения 900 об/мин,
объект (автомобиль) двигается с нормальной скоростью 66,13 км/час.

Никак не с космической скоростью в 1,1 км/сек.

Это неверно.

Расчет допустимой скорости автомобиля по диаметру шин и оборотов коленвала двигателя

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Расчет скорости автомобиля по передаточным числам

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в секунду. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому – рёбра или ручьи. Количество их может быть от трёх до двадцати.

Расчет скорости автомобиля по передаточным числам

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти – двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Обозначение PH PJ PK PL PM
Шаг ребер, S, мм 1.6 2.34 3.56 4.7 9.4
Высота ремня, H, мм 2.7 4.0 5.4 9.0 14.2
Нейтральный слой, h0, мм 0.8 1.2 1.5 3.0 4.0
Расстояние до нейтрального слоя, h, мм 1.0 1.1 1.5 1.5 2.0
Минимальный диаметр шкива, db, мм 13 20 45 75 180
Максимальная скорость, Vmax, м/с 60 60 50 40 35
Диапазон длины, L, мм 1140…2404 356…2489 527…2550 991…2235 2286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Расчет скорости автомобиля по передаточным числам

Как для ремня, так и для ответного шкива имеется соответствующая таблица с характеристиками для изготовления шкивов.

Сечение PH PJ PK PL PM
Расстояние между канавками, e, мм 1,60±0,03 2,34±0,03 3,56±0,05 4,70±0,05 9,40±0,08
Суммарная погрешность размера e, мм ±0,3 ±0,3 ±0,3 ±0,3 ±0,3
Расстояние от края шкива fmin, мм 1.3 1.8 2.5 3.3 6.4
Угол клина α, ° 40±0,5° 40±0,5° 40±0,5° 40±0,5° 40±0,5°
Радиус ra, мм 0.15 0.2 0.25 0.4 0.75
Радиус ri, мм 0.3 0.4 0.5 0.4 0.75
Минимальный диаметр шкива, db, мм 13 12 45 75 180

Минимальный радиус шкива задаётся не спроста, этот параметр регулирует срок службы ремня. Лучше всего будет если немного отступить от минимального диаметра в большую сторону. Для конкретной задачи мы выбрали самый распространённый ремень типа «РК». Минимальный радиус для данного типа ремней составляет 45 миллиметров. Учтя это, мы будем отталкиваться ещё и от диаметров имеющихся заготовок. В нашем случае имеются заготовки диаметром 100 и 80 миллиметров. Под них и будем подгонять диаметры шкивов.

Расчет скорости автомобиля по передаточным числам

Начинаем расчёт. Приведём ещё раз наши исходные данные и обозначим цели. Скорость вращения вала электродвигателя 2790 оборотов в минуту. Ремень поликлиновидный типа «РК». Минимальный диаметр шкива, который регламентируется для него, составляет 45 миллиметров, высота нейтрального слоя 1,5 миллиметра. Нам нужно определить оптимальные диаметры шкивов с учётом необходимых скоростей. Первая скорость вторичного вала 1800 оборотов в минуту, вторая скорость 3500 оборотов в минуту. Следовательно, у нас получается две пары шкивов: первая 2790 на 1800 оборотов в минуту, и вторая 2790 на 3500. Первым делом найдём передаточное отношение каждой из пар.

Расчет скорости автомобиля по передаточным числам

Формула для определения передаточного отношения:

Расчет скорости автомобиля по передаточным числам, где n1 и n2 – скорости вращения валов, D1 и D2 – диаметры шкивов.

Первая пара 2790 / 1800 = 1.55
Вторая пара 2790 / 3500 = 0.797

Далее по следующей формуле определяем диаметр большего шкива:

Расчет скорости автомобиля по передаточным числам, где h 0 нейтральный слой ремня, параметр из таблицы выше.

D2 = 45×1.55 + 2×1.5x(1.55 – 1) = 71.4 мм

Для удобства расчётов и подбора оптимальных диаметров шкивов можно использовать онлайн калькулятор.

Инструкция как пользоваться калькулятором. Для начала определимся с единицами измерений. Все параметры кроме скорости указываем в милиметрах, скорость указываем в оборотах в минуту. В поле «Нейтральный слой ремня» вводим параметр из таблицы выше столбец «PК». Вводим значение h0 равным 1,5 миллиметра. В следующем поле задаём скорость вращения валя электродвигателя 2790 оборотов в минуту. В поле диаметр шкива электродвигателя вводим значение минимально регламентируемое для конкретного типа ремня, в нашем случае это 45 миллиметров. Далее вводим параметр скорости, с которым мы хотим, чтобы вращался ведомый вал. В нашем случае это значение 1800 оборотов в минуту. Теперь остаётся нажать кнопку «Рассчитать». Диаметр ответного шкива мы получим соответствующем в поле, и оно составляет 71.4 миллиметра.

Примечание: Если необходимо выполнить оценочный расчёт для плоского ремня или клиновидного, то значением нейтрального слоя ремня можно пренебречь, выставив в поле «ho» значение «0».

Теперь мы можем (если это нужно или требуется) увеличить диаметры шкивов. К примеру, это может понадобится для увеличения срока службы приводного ремня или увеличить коэффициент сцепления пара ремень-шкив. Также большие шкивы иногда делают намеренно для выполнения функции маховика. Но мы сейчас хотим максимально вписаться в заготовки (у нас имеются заготовки диаметром 100 и 80 миллиметров) и соответственно подберём для себя оптимальные размеры шкивов. После нескольких переборов значений мы остановились на следующих диаметрах D1 – 60 миллиметров и D2 – 94,5 миллиметров для первой пары.

D2 = 60×1.55 + 2×1.5x(1.55 – 1) = 94.65 мм

Для второй пары D1 – 75 миллиметров и D2 – 60 миллиметров.

D2 = 75×0.797 + 2×1.5x(0.797 – 1) = 59.18 мм

Далее мы приступаем к изготовлению шкивов. Всем удачной работы!

Дополнительная информация по шкивам:

Мы начали первые экспиременты и уже подготовили первую часть материала: Тест ремённого привода. Поликлиновидный ремень. Так же выпустили обучающий короткометражный видеофильм.

Расчёт коленчатого вала двигателя

Страницы работы

Расчет скорости автомобиля по передаточным числам

Расчет скорости автомобиля по передаточным числам

Содержание работы

1.1 Общие положения

Для расчёта возьмём простой коленчатый вал, лежащий на двух опорах. Принципиальная схема конструкции показана на рисунке 1.1. Вал состоит из шатунной шейки 1, двух щек 2, двух коренных шеек 3, цапф 4 и 5 и подшипников 8. На вал насажены шкив 6 и маховик 7. Вал приводится во вращательное движение при помощи шатуна, шарнирно соединённого с поршнем двигателя.

На вал действуют нагрузки:

Р1 и Р2 – вес шкива и маховика соответственно;

F – сила, действующая на шатунную шейку со стороны поршня:

Т1 и Т2 – натяжения соответственно сбегающей и набегающей ветвей ременной передачи, посредствам которой крутящий момент передаётся исполнительному механизму.

1.2 Исходные данные

Коленчатый вал двигателя передаёт мощность N = 400 л.с. при n = 1600 об / мин через ременную передачу. Вал имеет одно колено с плечом кривошипа r = 170 мм; заданы размеры а = 250мм, b = 350 мм, с = 150мм, d1 = 200 мм. На одном конце вала посажен шкив массой m1 = 520 кг, а на другом – маховик массой m2 = 1400 кг. Шкив передаёт мощность через ременную передачу под углом α = 40° к горизонту. Натяжение набегающей ветви примем равным двойному натяжению сбегающей ветви. Радиус шкива R = 550 мм. Согласно теоретическим и опытным данным наибольшая нагрузка на вал будет при угле наклона кривошипа к горизонту φ = 40° (расчётное положение вала). Отношение длины шатуна к длине плеча кривошипа l /r = 4,4. Материал вала – сталь 35ХНВ (σт=1075 МПа; σ-1d=720 МПа). Коэффициент запаса прочности к = 1,65.

Вычисление нагрузки, действующие на вал и крутящего момента передаваемого валу через шкив.

Вычислим мощность по формуле:

N = 736 ∙ N (л.с.) = 736 ∙400 = 294400 Вт.

Найдём угловую скорость вращения вала двигателя:

ω = πn / 30 = π ∙ 1600 / 30 = 167,47 с -1 ,

где n — частота вращения, об / мин.

Определим массовые силы по формуле Р = mg,,

где g – ускорение свободного падения.

Р2 = m2 ∙ g = 1400 ∙ 9,81 = 13,73 кН.

Линейные размеры вала r = 170 мм = 0,17 м; а = 250 мм = 0,25 м; b = 350 мм = 0,35 м; с = 150 мм = 0,15 м; d1 =200 мм = 0,2 м; R = 550 мм = 0,55 м.

1.3 Определение расчётных нагрузок на вал

Определим крутящий момент, возникающий на валу двигателя:

Мк = N / ω = 294400 / 167,47 = 1760 Н∙м.

Натяжение Т1 сбегающей ветви ременной передачи, считая, что оно вдвое меньше натяжения набегающей ветви, находим по крутящему моменту

Следовательно, натяжение набегающей ветви Т2 = 2Т1 = 2 ∙ 3,2 = 6,4 кН.

Со стороны шкива под углом α = 40° к горизонту на вал действует изгибающая сила Т = Т1 + Т2 = 6,4 + 3,2 = 9,6 кН.

Кроме того, здесь действует вертикальная изгибающая сила от веса шкива Р1 = 5,1 кН. На противоположном конце вала действует вертикальная изгибающая сила от веса маховика Р2 = 13,73 кН.

Силу, действующую со стороны шатуна на шатунную шейку вала, разложим на две составляющие – окружную силу Fz, действующую перпендикулярно плоскости кривошипа, и радиальную силу Qу, действующую в плоскости кривошипа. Индекс показывает, вдоль какой оси координат направлена данная сила. При этом плоскость кривошипа будем рассматривать в положении под углом φ = 40° к горизонту (расчётное положение). По двум указанным направлениям (у, z) разложим на составляющие силы Т, Р1, Р2.

Окружная сила Fz должна создавать момент, уравновешивающий момент на шкиве, то есть

где r – радиус (плечо) кривошипа, м.

Fz = Мк / r = 1,76 / 0,17 = 10,35 Н.

Чтобы оценить радиальную силу Qу, следует найти угол β. По теореме синусов для углов наклона шатуна кривошипа к горизонту

sin φ / sinβ = 1 / r,

sin β = 1 / 4,4 ∙ sin40° =0,1580 получим β = 9,13°.

Тогда радиальная сила равна:

Qу = Fz ctg (φ + β) = 18,35 ctg (40° + 9,13°) = 8,96 кН.

Приведём силы Р1 и Р2, приложенные на концах вала к двум системам сил, к силам, действующим в плоскости кривошипа, и к силам, действующим перпендикулярно к плоскости кривошипа.

Сила, действующие в плоскости кривошипа:

Q = Р1 ∙sinφ – Т ∙cos (α + φ) = 5,10∙sin 40° – 9,6∙cos(40°+40°) = 1,61 кН

Найдём реакции опор Ау и Ву, действующие в плоскости кривошипа используя уравнение моментов относительно этих точек:

Ау = ( 8.96∙0,35 – 1.61(0,25 + 2∙0,35) – 8.83∙0.15) / 2∙0,28 = 0.40 кН;

Ву = (8.83(0.15+2∙0,35) + 8.96∙0,35 + 1.61∙0,25) / 2∙0,35= 15.78 кН.

Правильность решения уравнений проверим, используя условие равновесия:

Силы действующие перпендикулярно к плоскости кривошипа ( в плоскости щёк), будут на левом конце вала –

Q1z = Р1 ∙cosφ + T∙ sin(α + φ) = 5,10∙ cos40° + 9,6∙ sin(40°+40°) = 13,36 кН;

на правом конце вала –

Определим реакции опор Аz и Bя, действующие перпендикулярно плоскости кривошипа, используя уравнения моментов относительно этих точек:

Bz = ( -13,36∙0,25 – 0,35∙10,35 + (0,25+0,7)10,52) / 2∙0,35 = 2,83 кН;

Аz = ((0,25+0,70)13,36 – 0,355∙10,35 + 0,15∙10,52) / 0,70 = 10,70 кН.

Правильность решения уравнений проверим, используя уравнение равновесия:

Проектировочный расчет автомобиля ВАЗ-2108 (стр. 1 из 4)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра менеджмент на автомобильном транспорте

Проектировочный расчет автомобиля ВАЗ-2108

к курсовому проекту по дисциплине

Выполнил студент группы

шифр подпись И.О. Фамилия

Задание на проектирование

Прототип автомобиля: ВАЗ-2108

Максимальная скорость на прямой передаче на горизонтальном участке пути: Vmax =150 км/ч =42 м/с.

Максимальный коэффициент сопротивления дороги: ymax =0,35

Номинальная грузоподъёмность: mН =425 кг.

База автомобиля: L=2460 мм.

Вид топлива: бензин.

Удельный эффективный расход топлива: ge =308 г/кВт*ч.

Частота вращения коленчатого вала двигателя при максимальной мощности: nN =5400 мин -1 .

1. Определение полной массы автомобиля

2. Подбор размера шин и расчет радиуса качения

3. Расчет внешней характеристики двигателя

3.1 Частота вращения коленчатого вала двигателя

3.2 Максимальная мощность двигателя

3.3 Построение внешней характеристики двигателя

3.4 Вращающий момент двигателя

4. Выбор передаточных чисел

4.1 Определение передаточного числа главной передачи

4.2 Подбор передаточных чисел коробки передач

4.3 Определение числа передач и передаточных чисел коробки передач

5. Построение тяговой характеристики автомобиля

6. Определение основных показателей динамики автомобиля с механической трансмиссией

6.1 Динамический фактор

6.2 Ускорение автомобиля

6.3 Время разгона

7. Построение графика мощностного баланса

8. Построение экономической характеристики автомобиля

Целью курсовой работы является определение основных параметров двигателя, трансмиссии и компоновки автомобиля. А так же закрепление знаний по лабораторным работам по курсу «Автомобили».

Делая оценку тягово-скоростных свойств автомобиля, определяется конструктивные параметры, которые могут обеспечить заданные значения скоростей и ускорений в заданных дорожных условиях движения, а также нахождение предельных дорожных условий, т.е. выполню проектировочный тяговый расчёт.

Для проектирования нового автомобиля, за основу, т.е. за прототип, я взял легковой автомобиль-седан ВАЗ-2108. Я сделал свой выбор на этом автомобиле, потому что ВАЗ-2108 и вообще всё семейство автомобилей ВАЗ является одним из лидеров в Отечественном автомобилестроении. Автомобили ВАЗ-2108 и его модификации пользовались огромной популярностью у потребителя Отечественного автомобиля для семьи и работы.

1. Определение полной массы автомобиля

Полную массу ma автомобиля определяют как сумму масс снаряженного автомобиля mб и груза mн по номинальной грузоподъемности и число мест пассажиров, включая водителя.

Снаряженная масса определяется по формуле:

где ηб — коэффициент снаряженной массы, зависящий от номинальной грузоподъемности. У легковых автомобилей ηб =0,2-0,6

mб = 400/0,4 = 1000 кг

Полная масса легкового автомобиля определяется следующим образом из выражения:

где z — число мест в салоне, включая водителя.

Полный вес автотранспортного средства определяется по формуле:

2. Подбор размера шин и расчет радиуса качения

Для подбора шин и определения по их размерам радиуса качения колеса необходимо знать распределение нагрузки по мостам.

У легковых автомобилей распределение нагрузки от полной массы по мостам зависит в основном от компоновки. При классической компоновке на задний мост приходится 52…55% нагрузки от полной массы, для переднеприводных автомобилей 48%.

Радиус качения колеса rк выбирается в зависимости от нагрузки на одно колесо. Наибольшая нагрузка на колесо определяется положением центра масс автомобиля, которое устанавливается по предварительному эскизу или прототипу автомобиля.

Следовательно, нагрузку на каждое колесо передней и задней оси автомобиля соответственно можно определить по формулам:

Расстояние от передней оси до центра масс найдем по формуле:

L-база автомобиля, мм.

a= (6720*2,46) /14000=1,18м.

Расстояние от центра масс до задней оси:

Тип шин (по таблице ГОСТов) — 165-13/6,45-13. По этим размерам можно определить радиус колеса, находящегося в свободном состоянии:

Где b-ширина профиля шины (165 мм)

d — диаметр обода шины (13 дюймов)

Радиус качения колеса rk определяется с учетом деформации, зависящей от нагрузки:

где k — коэффициент радиальной деформации. Для стандартных и широкопрофильных шин k принимают 0,3

rk=0,5*330+ (1-0,3) *165=280мм=0,28м

3. Расчет внешней характеристики двигателя

Расчет начинается с определения мощности Nev, необходимой для обеспечения движения с заданной максимальной скоростью Vmax.

При установившемся движении автомобиля мощность двигателя в зависимости от дорожных условий может быть выражена следующей формулой (кВт):

где ψv — коэффициент суммарного дорожного сопротивления для легковых автомобилей определяется по формуле:

Kв — коэффициент обтекаемости, Кв =0,3 Н*с²*м -4

F — лобовая площадь автомобиля, м²

ηт — КПД трансмиссии=0,95

Кр — коэффициент коррекции=0,8

При рекомендуемых температурах масла в агрегатах механической трансмиссии ηт =0,8…0,95. Коэффициент коррекции в данном случае рекомендуется применять Kp=0,6…0,8.

Лобовую площадь для легкового автомобиля находим из формулы:

где В — габаритная ширина В=1650 мм

Нг — габаритная высота Нг = 1402 мм

Nev =42* (14000*0,018+0,3*1,848*42²) / (1000*0,95*0,8) =68,6 кВт

3.1 Частота вращения коленчатого вала двигателя

Частота вращения коленчатого вала двигателя nv , соответствующая максимальной скорости автомобиля, определяется из уравнения мин -1 :

где ηn — коэффициент оборотистости двигателя.

У существующих легковых автомобилей коэффициент оборотистости двигателя ηn лежит в приделах 30…35.

nv =150*35= 5250 мин -1

3.2 Максимальная мощность двигателя

Максимальную мощность двигателя найдем из формулы:

где nv /nN -отношение частоты вращения коленчатого вала двигателя при максимальной скорости движения автомобиля к частоте вращения при максимальной мощности двигателя;

a, b, c — коэффициенты, постоянные для каждого двигателя.

В случае прощеного расчета можно применять для бензиновых двигателей a=b=c=1.

Для построения внешней характеристики при известной мощности Nmax и выбранных коэффициентах a, b, c, принимаем частоту вращения коленчатого вала при максимальной мощности от 5250 мин -1

Nmax =68,6/ (1*5250/5400+1* (5250/5400) ²+1* (5250/5400) ³) =68,7 кВт

3.3 Построение внешней характеристики двигателя

Внешнюю характеристику двигателя с достаточной для практических расчетов можно определить по формуле Лейдермана (кВт):

где nТ — текущее значение частоты вращения коленчатого вала двигателя.

Текущее значение частоты вращения коленчатого вала двигателя выбирают произвольно через определенный интервал (например, 500, 1500, 2500 и т.д.), но так, чтобы полученных точек характеристики было не меньше семи.

Ne 1 =68,7* (1*500/5400+1 (500/5400) ²-1* (500/5400) ³) =6,9 кВт

Ne3 =68,7* (1*1500/5400+1* (1500/5400) ²-1* (1500/5400) ³) =22,94 кВт

Аналогично проводим расчет для следующих значений nТ и результаты расчетов сводим в Таблицу 1.

3.4 Вращающий момент двигателя

Определим вращающий момент двигателя по формуле:

Mв1 =30*6,9*1000/ (500*3,14) =131,93 кН*м

Мв3 =30*22.94/ (1500*3,14) =146,12 кН*м

Аналогично проводим расчет для следующих значений nТ и результаты расчетов сводим в Таблицу 1.

Таблица 1 — Внешняя характеристика двигателя

Параметры двигателя Скоростной режим двигателя
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Ne, кВт 6,90 14,66 22,94 31,42 39,76 47,65 54,75 60,74 65,28 68,06
Me, кН*м 131,93 140,07 146,12 150,09 151,96 151,76 149,46 145,08 138,61 130,05

По полученным данным таблицы 1 строится внешняя скоростная характеристика рисунок 1.

Расчет скорости автомобиля по передаточным числам

Рисунок 1 — Внешняя скоростная характеристика двигателя

4. Выбор передаточных чисел

4.1 Определение передаточного числа главной передачи

Передаточное число главной передачи из условий обеспечения Vmax на высшей передаче

Оптимальные обороты двигателя при эксплуатации автомобиля

Режим эксплуатации двигателя – один из главных факторов, влияющих на скорость износа его деталей. Хорошо, когда автомобиль оборудован автоматической коробкой либо вариатором, самостоятельно выбирающим момент перехода на высшую или низшую передачу. На машинах с «механикой» переключением занимается водитель, который «раскручивает» мотор по своему разумению и не всегда правильно. Поэтому автолюбителям без опыта стоит изучить, на каких оборотах лучше ездить, чтобы максимально продлить ресурс силового агрегата.

Расчет скорости автомобиля по передаточным числам

Движение на малых оборотах с ранним переключением

Зачастую инструктора автошкол и старые водители рекомендуют новичкам ездить «в натяг» – переходить на высшую передачу при достижении 1500–2000 об/мин коленчатого вала. Первые дают советы из соображений безопасности, вторые – по привычке, ведь раньше на машинах стояли низкооборотные моторы. Сейчас подобный режим годится разве что для дизеля, чей максимальный крутящий момент находится в более широком диапазоне оборотов, чем у бензинового двигателя.

Не все автомобили оборудованы тахометрами, поэтому малоопытным водителям при данном стиле езды стоит ориентироваться по скорости движения. Режим с ранним переключением выглядит так: 1-я передача – движение с места, переход на II – 10 км/ч, на III – 30 км/ч, IV – 40 км/ч, V – 50 км/ч.

Подобный алгоритм переключения – признак очень спокойного стиля вождения, дающий несомненное преимущество в безопасности. Минус – в повышении скорости износа деталей силового агрегата и вот почему:

  1. Масляный насос достигает номинальной производительности начиная с 2500 об/мин. Нагрузка при 1500–1800 оборотах вызывает масляное голодание, особенно страдают шатунные подшипники скольжения (вкладыши) и компрессионные поршневые кольца.
  2. Условия сжигания топливовоздушной смеси далеки от благоприятных. В камерах, на тарелках клапанов и днищах поршней усиленно откладывается нагар. В процессе работы эта сажа раскаляется и воспламеняет топливо без искры на свече зажигания (эффект детонации).
  3. Если нужно резко увеличить обороты двигателя при езде с самых «низов», вы нажимаете на акселератор, но разгон остается вялым, пока мотор не достигнет своего крутящего момента. Но как только это происходит, вы включаете высшую передачу и частота вращения коленвала снова падает. Нагрузка большая, смазки недостаточно, помпа слабо перекачивает антифриз, отсюда возникает перегрев.
  4. Вопреки распространенному мнению, экономия бензина в данном режиме отсутствует. При нажатии на педаль газа топливная смесь обогащается, но сгорает не полностью, значит, расходуется впустую.

Владельцам авто, оснащенных бортовым компьютером, легко убедиться в неэкономичности движения «в натяг». Достаточно включить на дисплее показ мгновенного расхода горючего.

Расчет скорости автомобиля по передаточным числамПодобная манера езды усиленно изнашивает силовой агрегат, когда автомобиль эксплуатируется в тяжелых условиях – по грунтовым и проселочным дорогам, с полной загрузкой либо прицепом. Не стоит расслабляться и владельцам авто с мощными моторами объемом 3 л и более, способными резко ускоряться с «низов». Ведь для интенсивного смазывания трущихся деталей двигателя нужно держать минимум 2000 об/мин коленчатого вала.

Чем вредна высокая частота вращения коленвала?

Манера езды «тапку в пол» подразумевает постоянное раскручивание коленчатого вала до 5–8 тыс. оборотов за минуту и позднее переключение скоростей, когда от шума двигателя буквально звенит в ушах. Чем чреват данный стиль вождения, кроме создания аварийных ситуаций на дороге:

  • все узлы и агрегаты автомобиля, а не только мотор, испытывают максимальные нагрузки в течение срока эксплуатации, что снижает общий ресурс на 15–20%;
  • из-за интенсивного нагрева двигателя малейший сбой охлаждающей системы ведет к капитальному ремонту вследствие перегрева;
  • трубы выхлопного тракта прогорают значительно быстрее, а вместе с ними – дорогостоящий катализатор;
  • ускоренно изнашиваются элементы трансмиссии;
  • поскольку частота вращения коленвала превышает нормальные обороты чуть ли не вдвое, расход горючего тоже увеличивается в 2 раза.

Эксплуатация автомобиля «на разрыв» имеет дополнительный негативный эффект, связанный с качеством дорожного покрытия. Движение на большой скорости по неровным дорогам буквально убивает элементы подвески, причем в кратчайшие сроки. Достаточно влететь колесом в глубокую выбоину – и передняя стойка согнется либо треснет.

Расчет скорости автомобиля по передаточным числам

Как правильно ездить?

Если вы не автогонщик и не приверженец езды «внатяжку», которому трудно переучиться и поменять стиль вождения, то для сбережения силового агрегата и автомобиля в целом старайтесь удерживать рабочие обороты двигателя в диапазоне 2000–4500 об/мин. Какие бонусы вы получите:

  1. Пробег до капитального ремонта мотора увеличится (полный ресурс зависит от марки авто и мощности мотора).
  2. Благодаря сгоранию топливовоздушной смеси в оптимальном режиме вы сможете экономить горючее.
  3. Быстрый разгон доступен в любой момент, стоит лишь нажать на педаль акселератора. Если оборотов недостаточно, с ходу переключайтесь на низшую передачу. Те же действия повторяйте при движении в гору.
  4. Система охлаждения будет функционировать в рабочем режиме и убережет силовой агрегат от перегрева.
  5. Соответственно, дольше прослужат элементы подвески и трансмиссии.

Рекомендация. На большинстве современных автомобилей, оснащенных высокооборотными бензиновыми моторами, лучше переключать передачи при достижении порога 3000 ± 200 об/мин. Это касается и перехода с высшей на низшую скорость.

Расчет скорости автомобиля по передаточным числамКак говорилось выше, приборные панели авто не всегда имеют тахометры. Для водителей с малым стажем вождения это является проблемой, поскольку частота вращения коленвала неизвестна, а ориентироваться по звуку новичок не умеет. Есть 2 вариант решения вопроса: купить и установить на торпедо электронный тахометр либо пользоваться таблицей, где указаны оптимальные обороты двигателя по отношению к скорости движения на разных передачах.

1 3 5
3200–4000 не менее 3000 > 2500
0–20 40–70 более 90

Примечание. Учитывая, что у различных марок и модификаций машин разное соответствие скорости движения и числа оборотов, в таблице приведены усредненные показатели.

Несколько слов о езде накатом с горы либо после разгона. В любой системе топливоподачи предусмотрен режим принудительного холостого хода, активирующийся в определенных условиях: автомобиль движется накатом, включена одна из передач, а обороты коленвала не опускаются ниже 1700 об/мин. Когда режим активирован, подача бензина в цилиндры блокируется. Так что вы спокойно можете тормозить двигателем на высшей скорости, не боясь напрасно израсходовать горючее.

Подбор размера шин и расчет радиуса качения

Для подбора шин и определения по их размерам радиусов качения колеса необходимо знать распределение нагрузки по мостам.

У легковых автомобилей распределение нагрузки от полной массы по мостам зависит в основном от компоновки. Для заднеприводных автомобилей на задний мост приходиться 48% от всего веса автомобиля.

Радиус качения колеса rк выбирается в зависимости от нагрузки на одно колесо. Наибольшая нагрузка на колесо определяется положением центра масс автомобиля, которое устанавливается по предварительному эскизу прототипа автомобиля.

Нагрузку на каждое колесо передней и задней оси автомобиля соответственно можно определить по формулам:

где G1, G2 — нагрузки от полной массы на переднюю и заднюю ось автомобиля соответственно.

G1=1300 * 9.8 * 0.52=6624.8H

G2=1300 * 9.8 * 0.48=6115.2H

Расстояние от передней оси до центра масс найдем по формуле:

где Ga – модуль сил тяжести автомобиля (Н);

L – база автомобиля.

Расстояние от центра масс до задней оси

в = 2,46 — 1,18 =1,28м

Выбираем шины 155-13/6,45-13. Максимальная нагрузка на колесо 3870Н. Ширина профиля b=155мм (6,45 дюймов). Посадочный диаметр обода 13 дюймов (d=330мм)

По этим размерам можно определить радиус колеса, находящегося в свободном состоянии

где b – ширина профиля шины (мм);

d – диаметр обода шины (мм), (1 дюйм = 25,4 мм)

Радиус качения колеса rк определяется с учетом деформации, зависящей от нагрузки

rк = 0,5 * d + (1 — k) * b,

где k – коэффициент радиальной деформации. k=0,15

Расчет внешней характеристики двигателя

Расчет начинается с определения мощности Nev, необходимой для обеспечения движения с заданной максимальной скоростью Vmax.

При установившемся движении автомобиля мощность двигателя в зависимости от дорожных условий может быть выражена следующей формулой (кВт):

где — коэффициент суммарного дорожного сопротивления определяется по формуле:

=0,01+5*10 -6 *(43,33) -2 =0,01939

Kв – коэффициент обтекаемости, Kв = 0,3 Н*с 2* м -4 ;

F – лобовая площадь автомобиля, м 2 ;

— КПД трансмиссии, =0,9

Kp – коэффициент коррекции, Kp=0,8

Лобовую площадь находим из формулы:

где Bг – габаритная ширина, Bг=1,75м

Hг – габаритная высота, Hг=2,102м

FA=0,8 * 1,75 * 1,402=1,9628м 2

Частота вращения коленчатого вала двигателя

Частота вращения коленчатого вала двигателя nv, соответствующая максимальной скорости автомобиля, определяется из уравнения (мин -1 ) :

где — коэффициент оборотистости двигателя, =35

Максимальная мощность двигателя

Максимальную мощность двигателя найдем из формулы:

Nmax = Nev / [ a * + b * ( ) 2 – c * ( ) 3 ]

где — отношение частоты вращения коленчатого вала двигателя при

максимальной скорости движения автомобиля к частоте

вращения при максимальной мощности двигателя;

a, b, c – коэффициенты, постоянные для каждого двигателя, для бензиновых двигателей a = b = c = 1.

Построение внешней характеристики двигателя

Внешнюю характеристику двигателя с достаточной для практических расчетов точностью можно определить по формуле Лейдермана (кВт):

Nе = Nмах * [ a * + b * ( ) 2 – c * ( ) 3 ] Nе = 81,5 * [ 1 * + 1 * ( ) 2 – 1 * ( ) 3 ]=7,85883 кВт

где nт – текущее значение частоты вращения коленчатого вала двигателя.

Результаты расчетов сводим в таблицу.

Вращающий момент двигателя

Bвращающий момент двигателя определим по формуле:

Ме = 30*7,85883/500*3,14=150,169 кН*м

Результаты расчетов сводим в таблицу.

Внешняя скоростная характеристика двигателя.

параметр Скоростной режим работы двигателя
Nе, кВт 7,85883 16,67 26,079 35,746 45,3198 54,4533 62,8 70,01 75,74 79,63 81,35 80,54 76,86
Ме, кН*м 150,169 159,2 166,11 170,76 173,197 173,418 171,4 167,2 160,8 152,2 141,3 128,2

Выбор передаточных чисел

Определение передаточного числа главной передачи

Передаточное число главной передачи из условий обеспечения Vmax на высшей передаче

где Uдк – передаточное число высшей передачи дополнительной коробки

Uдк = 1, при ее отсутствии.

Uкв – высшее расчетное передаточное число коробки передач.

Построение тяговой характеристики автомобиля

Скорость движения автомобиля на данной передаче при данной частоте вращения коленвала двигателя nт вычисляется по формуле (м/с):

Результаты расчетов сводим в таблицу 2.

I Va1=0,105* (0,28*500) / (3,28*3,06*1,2) =1,22

II Va1=0,105* (0,28*500) / (1,97*3,06*1,2) =2,03

Аналогично проводим расчёт для каждой из передач для следующих значений оборотов коленвала двигателя, и результаты расчётов сводим в таблицу 2.

На основании таблицы строится тяговая характеристика автомобиля Pт=f (Va) для каждой передачи рисунок 2.

Расчет скорости автомобиля по передаточным числам

Рисунок 2 — Тяговая характеристика автомобиля

Тяговое усилие, подводимое к ведущим колесам автомобиля, расходуется на преодоление сопротивлений качению, воздуха, подъему, инерции.

Сопротивление воздуха определяется соотношением (Н):

Результаты расчетов сводим в таблицу 3

I Рв=0.3*1.848*1.22²=0.82 H

II Рв=0.3*1.848*2.03²=2.28 Н

Аналогично проводим расчёт для каждой из передач для следующих значений оборотов коленвала двигателя, и результаты расчётов сводим в таблицу 3.

Источник Источник http://kalina-2.ru/remont-vaz/raschet-skorosti-avtomobilja-po-peredatochnym
Источник http://magnitogorsk-lada.ru/raschet-dopustimoj-skorosti-avtomobilja-po-diametru-shin-i-oborotov-kolenvala-dvigatelja/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: